datawhale训练营数据pytorch第三次作业

这篇博客详细介绍了如何使用PyTorch实现Logistic Regression,包括数据预处理、模型定义、损失函数选择、优化器设置以及训练过程。在经过5个epoch的训练后,模型在测试集上的准确率为82%。
摘要由CSDN通过智能技术生成

本期的作业内容为:

PyTorch实现Logistic regression 
1.PyTorch基础实现代码
2.用PyTorch类实现Logistic regression,torch.nn.module写网络结构

代码为:

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

# Hyper-parameters 
input_size = 784
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001

# MNIST dataset (images and labels)
train_dataset = torchvision.datasets.MNIST(root='data/', 
                                           train=True, 
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='data/', 
                                          train=False, 
                                          transform&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值