【Task6(2天)】PyTorch理解更多神经网络优化方法
1.了解不同优化器
2.书写优化器代码
3.Momentum
4.二维优化,随机梯度下降法进行优化实现
5.Ada自适应梯度调节法
6.RMSProp
7.Adam
8.PyTorch种优化器选择
2.优化器代码为:
import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
torch.manual_seed(1) # reproducible
LR = 0.01
BATCH_SIZE = 32
EPOCH = 12
# fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
# plot dataset
plt.scatter(x.numpy(), y.numpy())
plt.show()
# 使用上节内容提到的 data loader
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)
# 默认的 network 形式
class Net(torch.nn.Module):