datawhale训练营数据pytorch第6次作业

本文介绍了PyTorch中不同的优化器,包括SGD、Momentum、RMSprop和Adam,并通过代码示例展示了它们在神经网络训练中的应用。此外,还详细解释了动量法的实现及其在MNIST数据集上的训练过程。
摘要由CSDN通过智能技术生成

【Task6(2天)】PyTorch理解更多神经网络优化方法
1.了解不同优化器
2.书写优化器代码
3.Momentum
4.二维优化,随机梯度下降法进行优化实现
5.Ada自适应梯度调节法
6.RMSProp
7.Adam
8.PyTorch种优化器选择

 

2.优化器代码为:

import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt

torch.manual_seed(1)    # reproducible

LR = 0.01
BATCH_SIZE = 32
EPOCH = 12

# fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))

# plot dataset
plt.scatter(x.numpy(), y.numpy())
plt.show()

# 使用上节内容提到的 data loader
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)
 

# 默认的 network 形式
class Net(torch.nn.Module):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值