仅供自己学习参考,若有侵权,请联系minhuiwon@163.com
这次主要介绍的是多个随机变量之间的关系,主要涉及联合概率,边缘概率,条件概率这三种关系,还有一个利用他们之间关系导出的非常重要的公式:贝叶斯公式。
1.联合概率
联合概率指的是包含多个条件且所有条件同时成立的概率,记作P(X=a,Y=b)或P(a,b),有的书上也习惯记作P(ab),但是这种记法个人不太习惯,所以下文采用以逗号分隔的记法。
- 一定要注意是所有条件同时成立!
2.边缘概率
边缘概率是与联合概率对应的,P(X=a)或P(Y=b),这类仅与单个随机变量有关的概率称为边缘概率
3.联合概率与边缘概率的关系
P(X=a)=∑bP(X=a,Y=b)
P(Y=b)=∑aP(X=a,Y=b)
求和符号表示穷举所有Y(或X)所能取得b(或a)后,所有对应值相加得到的和
4.条件概率
条件概率表示在条件Y=b成立的情况下,X=a的概率,记作P(X=a|Y=b)或P(a|b),它具有如下性质:
“在条件Y=b下X的条件分布”也是一种“X的概率分布”,因此穷举X的可取值之后,所有这些值对应的概率之和为1即:
∑aP(X=a|Y=b)=1
5.联合概率、边缘概率与条件概率之间的关系
P(X=a|Y=b)=P(X=a,Y=b)P(Y=b)
为了方便理解这个式子,可以将概率转化为面积:
- 联合概率P(X=a,Y=b)
满足X=a且Y=b的面积- 边缘概率P(X=a)
不考虑Y的取值,所有满足X=a的区域的总面积- 条件概率P(X=a|Y=b)
在Y=b的前提下,满足X=a的面积(比例)