题目描述
在以后的若干天里戴维将学习美元与德国马克的汇率。编写程序帮助戴维何时应买或卖马克或美元,使他从100美元开始,最后能获得最高可能的价值。
输入输出格式
输入格式:
输入文件的第一行是一个自然数N,1≤N≤100,表示戴维学习汇率的天数。
接下来的N行中每行是一个自然数A,1≤A≤1000。第i+1行的A表示预先知道的第i+1天的平均汇率,在这一天中,戴维既能用100美元买A马克也能用A马克购买100美元。
输出格式:
输出文件的第一行也是唯一的一行应输出要求的钱数(单位为美元,保留两位小数)。
注意:考虑到实数算术运算中进位的误差,结果在正确结果0.05美元范围内的被认为是正确的,戴维必须在最后一天结束之前将他的钱都换成美元。
输入输出样例
输入样例#1:
5 400 300 500 300 250
输出样例#1:
266.67
说明
样例解释 (无需输出)
Day 1 ... changing 100.0000 美元= 400.0000 马克
Day 2 ... changing 400.0000 马克= 133.3333 美元
Day 3 ... changing 133.3333 美元= 666.6666 马克
Day 5 ... changing 666.6666 马克= 266.6666 美元
开学以来真正写dp第一题
一直以来对dp的理解都不深
重新学起
关键:
美元的来源:上一天的美元没有交换;上一天的马克交换而来;
马克的来源:上一天的马克没有交换;上一天的美元交换而来;
这样就得到了两条路径 每次取最大值即可
有一种说法是动规应该用递推的思想解决问题
一天一天的分情况讨论状态转移
简单的dp转移方程就很轻而易举的推出来了
#include<bits/stdc++.h>
#define maxn 105
using namespace std;
template <typename T> void read(T &x){
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-1;
for(;isdigit(ch);ch=getchar())x=(x<<1)+(x<<3)+ch-'0';
x*=f;
}
int n;
double a[maxn];
double opt1[maxn],opt2[maxn];//dollar mark
int main(){
read(n);
for(int i=1;i<=n;++i){
double x;
cin>>x;
a[i]=x/100.0;
}
opt1[0]=100,opt2[0]=0;
for(int i=1;i<=n;++i){
opt1[i]=max(opt1[i-1],opt2[i-1]/a[i]);
opt2[i]=max(opt2[i-1],opt1[i-1]*a[i]);
}
//for(int i=1;i<=n;++i) cout<<opt1[i]<<" "<<opt2[i]<<endl;
cout<<fixed<<setprecision(2)<<opt1[n]<<endl;
return 0;
}