题目描述
N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形。
合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2…,K,他们的身高分别为T1,T2,…,TK, 则他们的身高满足T1<...<Ti>Ti+1>…>TK(1<=i<=K)。
你的任务是,已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。
输入输出格式
输入格式:
输入文件chorus.in的第一行是一个整数N(2<=N<=100),表示同学的总数。第一行有n个整数,用空格分隔,第i个整数Ti(130<=Ti<=230)是第i位同学的身高(厘米)。
输出格式:
输出文件chorus.out包括一行,这一行只包含一个整数,就是最少需要几位同学出列。
输入输出样例
输入样例#1:
8 186 186 150 200 160 130 197 220
输出样例#1:
4
说明
对于50%的数据,保证有n<=20;
对于全部的数据,保证有n<=100。
嗯…又是一道经典题
大概每个入门都要讲吧
做完最长上升子序列再来想这一题 是非常容易的
关键:考虑到数据范围
可以类似枚举每一个点为序列的最高点
以这个点为中心 正着做一遍最长上升子序列 反着做一遍最长上升子序列(即最长下降子序列
最后f1+f2值相加
答案就显而易见了
注意:
①两个子序列中自己算了两次 即答案多减了一次 答案要加一
②如果在算f1时一起做最长下降序列 没有考虑到无后效性
#include<bits/stdc++.h>
using namespace std;
template <typename T> void read(T &x){
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-1;
for(;isdigit(ch);ch=getchar())x=(x<<1)+(x<<3)+ch-'0';
x*=f;
}
int n;
int a[110];
int f1[110];// up
int f2[110];// down
int ans=-1;
int main(){
read(n);
for(int i=1;i<=n;++i){
read(a[i]);
f1[i]=1;
f2[i]=1;
}
for(int i=2;i<=n;++i)
for(int j=1;j<i;++j)
if(a[j]<a[i]) f1[i]=max(f1[i],f1[j]+1);
for(int i=n-1;i>=1;--i)
for(int j=n;j>i;--j)
if(a[j]<a[i]) f2[i]=max(f2[i],f2[j]+1);
//for(int i=1;i<=n;++i) cout<<f1[i]<<" "<<f2[i]<<endl;
for(int i=1;i<=n;++i) ans=max(ans,f1[i]+f2[i]);
cout<<n-ans+1<<endl;
return 0;
}