找回 丢失的“Win11 专业版”安全中心

24年的第一个月回高校学习了,无奈的世界里,需要自带电脑,需要重新安装系统,于是在15年的老破机上装了几个系统,试了几次还是win11会合适点,但是碰到了下载安装的系统的“windows 安全中心”被阉割了。

尝试了网上的很多方法,有的说通过powershell启动输入命令重启,有点说尝试后台启动服务或者修改注册表,有点还在mircosoft store上安装defender…                

最后在官网看到了,解决了。

S1、UUP dump登录该网址

屏幕剪辑的捕获时间: 2/29/2024 11:05 AM

在windows11频道下输入自己的系统信息

比如我的是22H2 (22621.3155)[(win+r,输入winver命令,弹出你的版本信息)]

屏幕剪辑的捕获时间: 2/29/2024 11:06 AM

S2、选择对应的版本后,如图框起来的,接入新的搜索界面,后输入SecHealth搜索

屏幕剪辑的捕获时间: 2/29/2024 11:11 AM

屏幕剪辑的捕获时间: 2/29/2024 11:11 AM

S3、点击下载后,把后缀名修改为appx,然后安装即可!

Microsoft.SecHealthUI_8wekyb3d8bbwe.appx下载到本地

注意:浏览器下载的时候会提示是否保留该文件,提示保留即可。然后改后缀名安装即可。

最后界面出来了:

屏幕剪辑的捕获时间: 2/29/2024 11:16 AM

好了,专业版本windows安全中心问题折腾了一个月,终于解决了。

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个在高校打杂的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值