使用多线程的方式对数据操作

分享知识 传递快乐

使用多线程的方式批量处理数据操作。示例如下:

示例1:单线程多批次

public static void test(List<String> listData) {
    long beginTime = System.currentTimeMillis();
    // CPU内核数+1
    int threadSize = Runtime.getRuntime().availableProcessors() + 1;
    // 数据大小
    int dataSize = listData.size();
    // 方法一:批次大小(每个线程要处理数据量)
    int batchSize = (dataSize - 1) / threadSize + 1;
    System.out.println(batchSize);

    // 方法二:批次大小(每个线程要处理数据量)
    int batchSize2 = dataSize / threadSize + 1;
    if (dataSize % threadSize == 0) {
        batchSize2 = batchSize2 - 1;
    }
    System.out.println(batchSize2);


    // 批次处理数
    int batchCount = (int) Math.ceil(1.0 * dataSize / batchSize);
    System.out.println(batchCount);

    // 根据批次数遍历数据
    for (int i = 0; i < batchCount; i++) {
        int start = i * batchSize;
        int end = Math.min(start + batchSize, dataSize);
        // 批次数据
        List<String> batchData = listData.subList(start, end);
        log.info("第{}批次:start={}, end={}, batchSize={}, batchData={}", i, start, end, batchData.size(), JSONUtil.toJsonStr(batchData));
    }

    executorService.shutdown();
}

示例2:线程池无返回值

public static void test2(List<String> listData) {
    long beginTime = System.currentTimeMillis();
    // CPU内核数+1
    int threadSize = Runtime.getRuntime().availableProcessors() + 1;
    // 数据大小
    int dataSize = listData.size();
    // 方法一:批次大小(每个线程要处理数据量)
    int batchSize = (dataSize - 1) / threadSize + 1;
    System.out.println(batchSize);

    // 方法二:批次大小(每个线程要处理数据量)
//        int batchSize2 = dataSize / threadSize + 1;
//        if (dataSize % threadSize == 0) {
//            batchSize2 = batchSize2 - 1;
//        }
//        System.out.println(batchSize2);


    // 批次处理数
    int batchCount = (int) Math.ceil(1.0 * dataSize / batchSize);
    System.out.println(batchCount);

    // 初始化线程池
    ExecutorService executorService = new ThreadPoolExecutor(batchCount,// 核心线程池大小
            100,// 线程池最大容量大小
            0L,// 线程池空闲时,线程存活的时间
            TimeUnit.MILLISECONDS,// 时间单位
            new LinkedBlockingQueue<Runnable>()// 任务队列
    );


    // 根据批次数遍历数据
    for (int i = 0; i < batchCount; i++) {
        int start = i * batchSize;
        int end = Math.min(start + batchSize, dataSize);

        // 批次数据
        List<String> batchData = listData.subList(start, end);
        log.info("第{}批次:start={}, end={}, batchSize={}", i, start, end, batchData.size());
        executorService.submit(() -> {
            log.info(JSONUtil.toJsonStr(batchData));
        });
    }
    executorService.shutdown();
}

示例3:线程池有返回值

public static void test3(List<String> listData) throws Exception {
    long beginTime = System.currentTimeMillis();
    // CPU内核数+1
    int threadSize = Runtime.getRuntime().availableProcessors() + 1;
    // 数据大小
    int dataSize = listData.size();
    // 批次大小(每个线程要处理数据量)
    int batchSize = (dataSize - 1) / threadSize + 1;
    System.out.println(batchSize);

    // 批次处理数
    int batchCount = (int) Math.ceil(1.0 * dataSize / batchSize);
    System.out.println(batchCount);

    // 初始化线程池
    ExecutorService executorService = new ThreadPoolExecutor(batchCount,// 核心线程池大小
            100,// 线程池最大容量大小
            0L,// 线程池空闲时,线程存活的时间
            TimeUnit.MILLISECONDS,// 时间单位
            new LinkedBlockingQueue<Runnable>()// 任务队列
    );


    // 根据批次数遍历数据
    for (int i = 0; i < batchCount; i++) {
        int start = i * batchSize;
        int end = Math.min(start + batchSize, dataSize);

        // 批次数据
        List<String> batchData = listData.subList(start, end);
        log.info("第{}批次:start={}, end={}, batchSize={}", i, start, end, batchData.size());
        Future<Boolean> future = executorService.submit(() -> {
            for (String str : batchData) {
                log.info(JSONUtil.toJsonStr(batchData));
            }
            return true;
        });

        // 返回每个线程处理的结果(顺序)
        log.info(future.get() + "");
    }
    executorService.shutdown();
}

示例4:线程池有返回值

public static void test4(List<String> listData) throws Exception {
    long beginTime = System.currentTimeMillis();
    // CPU内核数+1
    int threadSize = Runtime.getRuntime().availableProcessors() + 1;
    // 数据大小
    int dataSize = listData.size();
    // 批次大小(每个线程要处理数据量)
    int batchSize = (dataSize - 1) / threadSize + 1;
    System.out.println(batchSize);

    // 批次处理数
    int batchCount = (int) Math.ceil(1.0 * dataSize / batchSize);
    System.out.println(batchCount);

    // 初始化线程池
    ExecutorService executorService = new ThreadPoolExecutor(batchCount,// 核心线程池大小
            100,// 线程池最大容量大小
            0L,// 线程池空闲时,线程存活的时间
            TimeUnit.MILLISECONDS,// 时间单位
            new LinkedBlockingQueue<Runnable>()// 任务队列
    );
    // 定义一个任务集合
    List<Callable<Boolean>> tasks = new ArrayList<>();

    // 根据批次数遍历数据
    for (int i = 0; i < batchCount; i++) {
        int start = i * batchSize;
        int end = Math.min(start + batchSize, dataSize);

        // 批次数据
        List<String> batchData = listData.subList(start, end);
        log.info("第{}批次:start={}, end={}, batchSize={}", i, start, end, batchData.size());
        Future<Boolean> future = executorService.submit(() -> {
            for (String str : batchData) {
                log.info(JSONUtil.toJsonStr(batchData));
            }
            return true;
        });

        // 这里提交的任务容器列表和返回的Future列表存在顺序对应的关系
        tasks.add(() -> {
            for (String str : batchData) {
                log.info(JSONUtil.toJsonStr(batchData));
            }
            return true;
        });

    }
    List<Future<Boolean>> futures = executorService.invokeAll(tasks);
    for (Future<Boolean> future : futures) {
        // 返回每个线程处理的结果(顺序)
        log.info(future.get() + "");
    }
    executorService.shutdown();
}

注意:

如果使用多线程最好给每个线程命名,方便查看日志和定位问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旷野历程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值