算法笔记:Codeup_最短路径_问题 C: 最短路径

题目描述

N个城市,标号从0到N-1,M条道路,第K条道路(K从0开始)的长度为2^K,求编号为0的城市到其他城市的最短距离。

输入

第一行两个正整数N(2<=N<=100)M(M<=500),表示有N个城市,M条道路,
接下来M行两个整数,表示相连的两个城市的编号。

输出

N-1行,表示0号城市到其他城市的最短路,如果无法到达,输出-1,数值太大的以MOD 100000 的结果输出。

思路:难点在于最多会有500条道路,用int储存变量最多也就表示到2的31次方也就是第31条道路,而如果在建图算路径时每次都取模的话会导致一些k值更大更长的路径取模后小于k值更小的路径,不能算出正确的最短路径。因此,在建图时,邻接矩阵中只保存k值,不保存由k值计算出的实际路径长度。但如果用这种保存方法,传统的Dijkstra无法正确得出正确的最短路径,因此我将传统Dijkstra:

for(int j = 0;j < n;j++){
    if(!vis[j] && G[u][j] != INF){
        if(G[u][j] + d[u] < d[j]){//传统的Dijsktra判断是否更新d[j]
            d[j] = G[u][j] + d[u];
        }
    }   
}

改为了:

for(int j = 1;j < n;j++){
            if(!vis[j] && G[u][j] != INF){
                if(G[u][j] < d[j]){//这里改了更新d[j]条件
                    d[j] = G[u][j];
                    pre[j] = u;
                    //由于d[j]不再记录最短路径的和,因此用pre记录最短路径上的上一个结点
                    //后续只需对pre数组进行递归,计算各点的最短路径
                }
            }
        }

利用的性质是:2^0 + 2^1 + 2^2 + ... + 2^(k-1) = 2^k - 1.(等比数列求和)

即2^0 + 2^1 + 2^2 + ... + 2^(k-1) < 2^k.

 举个例子:对于下图这种情况,想求从0到4的最短路径,如果用传统Dijkstra会得到k=4的这条边是0到4的最短路径,而实际上:

Distance(0->4) = 2^4 = 16;

Distance(0->1->2->3->4) = 2^0 + 2^1 + 2^2 + 2^3 = 15;

最短路径应该是0->1->2->3->4;

 

在这种情况里,一个k=4就打破了前面四条路(0->1->2->3->4)所积累的所有长度,因此我们没必要在dijkstra算法中更新d[j]时再求前面所有的加和,反正只要一个最大的k就可以打破其他所有的路径的加和,因此,我们的d数组,d[i]表示从0到i点一路走来,经历过最大的k值,更新条件为:当我们遇到更小的k值,我们便可以更新d[i]为更小的k值(更小的k值代表更短的路径)。

水平不高,代码比较冗长,大家看Dijkstra部分就好。

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxN = 110;
const int INF = 0x3fffffff;
const int mod = 100000;
int G[maxN][maxN];
bool vis[maxN];
int d[maxN];
int ans[maxN];
int pre[maxN];
int n,m;
int fake_pow(int num){
    int t = 1;
    for(int i = 0;i < num;i++){
        t = (t*2) % mod;
    }
    return t;
}
void Dijkstra(int s){
    fill(d , d+maxN , INF);
    d[s] = 0;
    for(int i = 0;i < n;i++){
        int u = -1 , MIN = INF;
        for(int j = 0;j < n;j++){
            if(!vis[j] && d[j] < MIN){
                u = j;
                MIN = d[j];
            }
        }
        if(u == -1) return;
        vis[u] = true;
        for(int j = 1;j < n;j++){
            if(!vis[j] && G[u][j] != INF){
                if(G[u][j] < d[j]){
                    d[j] = G[u][j];
                    pre[j] = u;
                }
            }
        }
    }
}
bool get_a[maxN];
bool get_ans(int s){
    if(pre[s] == 0){
        ans[s] = fake_pow(G[s][pre[s]]-1);
        get_a[s] = true;
        return true;
    }else if(pre[s] == -1){
        ans[s] = -1;
        return false;
    }
    if(get_ans(pre[s])) {
        ans[s] = ans[pre[s]] + fake_pow(G[s][pre[s]]-1);
        get_a[s] = true;
    }else{
        ans[s] = -1;
        return false;
    }
    return true;
}
void final_ans(){
    memset(get_a , false , sizeof(bool) *maxN);
    for(int i = 1;i < n;i++){
        if(!get_a[i]){
            get_ans(i);
        }
    }
}
int main(){
    while(scanf("%d%d",&n,&m) != EOF){
        fill(vis , vis +maxN , false);
        fill(ans , ans +maxN , -1);
        fill(G[0],G[0] + maxN*maxN , INF);
        fill(pre,pre+maxN , -1);
        int c1 , c2;
        for(int i = 1;i <= m;i++){
            scanf("%d%d",&c1 , &c2);
            G[c1][c2] = i;
            G[c2][c1] = i;
        }
        Dijkstra(0);
        final_ans();
        for(int i = 1;i < n;i++){
            printf("%d\n",ans[i]%mod);
        }
    }
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 迪杰斯特拉最短路径算法是一种用于解决带权有向图中单源最短路径问题算法。该算法的基本思想是:从源点开始,依次确定到各个顶点的最短路径,直到所有顶点的最短路径都被确定。 具体实现过程如下: 1. 初始化:将源点到各个顶点的距离都设为无穷大,将源点到自身的距离设为。 2. 选择当前距离源点最近的未确定最短路径的顶点,将其标记为已确定最 ### 回答2: 迪杰斯特拉最短路径算法(Dijkstra's shortest path algorithm)是解决带权有向图或无向图中,从起点到终点的最短路径问题的经典算法之一。 该算法使用了贪心思想,每次从尚未确定最短路径的节点中选取一距离起点最近的节点,通过该节点重新更新起点到其它未确定最短路径节点的距离,直到所有节点的最短路径都被确定。 具体实现如下: 1. 初始化:起点到自身的距离为0,其余节点的距离为无穷大。 2. 选择当前可到达且距离起点最近的节点,标记该节点为确定最短路径节点。 3. 更新该节点的邻居节点的距离,若经过当前节点到某个邻居节点的距离比已有距离短,则更新距离。 4. 重复2、3步骤,直到所有节点的最短路径都被确定。 在实际应用中,可以使用优先队列或堆等数据结构来优化算法实现,以提升算法效率。同时,该算法也具有一定的局限性,如不能处理存在负边权的图问题,需要使用另外的算法来解决。 总之,迪杰斯特拉最短路径算法是解决最短路径问题的高效算法之一,在实际应用中具有广泛的应用价值。 ### 回答3: 迪杰斯特拉最短路径算法是一种用于解决带有加权边的最短路径问题算法。该算法的主要思想是从起点开始,通过计算所有节点到起点的距离,并选择距离最短的节点进行扩展。在扩展的过程中,更新已知的最短路径以及每个节点的父节点指向,直到扩展到终点节点或所有节点都被扩展为止。 在算法的实现过程中,首先需要将所有节点的距离初始化为无穷大,并将起点的距离设置为0。然后,将起点加入到一个未访问节点的集合中,并将其标记为已访问。接着,根据起点节点的邻居节点,更新它们的距离和父节点指向,并将它们加入到未访问节点的集合中。之后,从未访问节点的集合中选择距离最短的节点进行扩展,并重复之前的步骤,直到终点节点被扩展或所有节点都被扩展为止。 迪杰斯特拉最短路径算法的时间复杂度为O(n^2),其中n为节点的数量。在实际应用中,该算法也可以通过采用优先队列等数据结构来优化,从而达到更好的时间复杂度。 总之,迪杰斯特拉最短路径算法在现代计算机科学中应用广泛。它可以用于建立地图应用、路由算法、网络流量控制以及许多其他应用领域。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值