Datawhale零基础入门数据挖掘 - 二手车交易价格预测
xhj19950903
这个作者很懒,什么都没留下…
展开
-
模型结果融合
1.简单加权融合1.1 回归(分类概率)## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值test_pre1 = [1.2, 3.2, 2.1, 6.2]test_pre2 = [0.9, 3.1, 2.0, 5.9]test_pre3 = [1.1, 2.9, 2.2, 6.0]# y_test_true 代表第模型的真实值y_test_true = [1,...原创 2020-04-04 19:22:45 · 2124 阅读 · 0 评论 -
建模与调参
线性回归模型模型性能验证记录一下我一般的几个操作交叉验证1from sklearn.datasets import load_iris # iris数据集from sklearn.model_selection import train_test_split # 分割数据模块from sklearn.neighbors import KNeighborsClassifier # K最近...原创 2020-04-01 20:26:24 · 176 阅读 · 0 评论 -
特征工程
title: 数据预处理date: 2019-3-31 20:17:39tags:特征工程机器学习categories:机器学习mathjax: true概述数据预处理和特征选择是数据挖掘与机器学习中关注的重要问题,坊间常说:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。特征工程就是将原始数据转化为有用的特征,更好的表示预测模型处理的实际问题,提升对于...原创 2020-03-28 13:05:51 · 152 阅读 · 0 评论 -
数据的探索性分析(EDA)
载入各种数据科学以及可视化库#coding:utf-8#导入warnings包,利用过滤器来实现忽略警告语句。import warningswarnings.filterwarnings('ignore')import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as sn...原创 2020-03-21 22:08:34 · 193 阅读 · 0 评论 -
赛题理解01
赛题理解01赛题数据数据初探评价指标分类问题回归问题经验总结赛题理解是第一步,也是为了后面的特征工程和模型选择调优等做一个基础性的理解工作。赛题数据赛题以预测二手车的交易价格为任务,数据集报名后可见并可下载,该数据来自某交易平台的二手车交易记录,总数据量超过40w,包含31列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取15万条作为训练集,5万条作为测试集A,5万条作为测...原创 2020-03-20 15:31:14 · 249 阅读 · 0 评论