Windows SVG预览工具(SVG Explorer Extension)

Windows系统不支持在文件夹下直接预览svg图片,需要使用SVG扩展插件解决。
SVG Viewer Extension for Windows Explorer:它是一款功能实用的SVG图片格式本地预览工具,有了它即可轻松的进行本地文件夹中查看和浏览SVG格式资源文件

  • Github 地址

https://github.com/tibold/svg-explorer-extension

在cmd窗口中输入以下命令将图标缓存清空,并重启资源管理器或重启电脑。

TASKKILL /IM explorer* /F && DEL "%localappdata%\IconCache.db" /A && explorer.exe
### 本地部署 DeepSeek 构建知识库 #### 安装 Ollama 为了启动 DeepSeek 的运行环境,需先安装 Ollama。此操作确保了后续组件能够顺利运作并支持整个系统的正常工作[^1]。 ```bash pip install ollama ``` #### 配置 DeepSeek 和集成 Cherry-Studio 完成 Ollama 的安装之后,按照官方提供的说明文档配置 DeepSeek。对于希望简化管理流程的用户来说,可以通过图形界面工具 Cherry-Studio 来实现更便捷的操作体验。 #### 设置本地知识库 针对想要创建个性化知识存储的需求,可以参照具体指南来设置本地的知识库结构。这一步骤涉及到了解如何有效地组织和索引资料以便于后期查询使用[^2]。 #### 准备必要的嵌入模型 在此之前,请务必预先下载并安装适合中文语境下的嵌入模型 shaw/dmeta-embedding-zh 或者 nomic-embed-text。这些预训练好的模型有助于提高文本相似度计算效率以及准确性[^4]。 ```bash # 假设以 dmeta-embedding-zh 为例 git clone https://github.com/shaw/dmeta-embedding-zh.git cd dmeta-embedding-zh pip install . ``` #### 数据导入与处理 当一切准备就绪后,就可以开始上传所需文件至系统中,并对其进行相应的转换处理——即将原始文档转化为机器可读的形式(即向量)。完成后便可通过新建线程的方式发起对话请求,从而获取有关该份材料的信息摘要或是特定问题的回答。 ```python from deepseek import KnowledgeBaseManager manager = KnowledgeBaseManager() manager.upload_documents('path/to/your/documents') manager.save_and_embed() # 向量化处理 thread_id = manager.new_thread() response = manager.query(thread_id, "请问这份报告的主要结论是什么?") print(response) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值