基于生成式对抗网络的联邦学习贡献度评估算法
基本信息
标题 | Incentive mechanism for federated learning based on generative adversarial network |
---|---|
作者 | YU Sunjie,ZENG Hui,XIONG Shiyu,SHI Hongzhou |
期刊 | Journal of Computer Applications |
发表日期 | 2024年 |
关键词 | 联邦学习;生成式对抗网络;激励机制;数据共享 |
背景
针对当前难以衡量不同数据量、不同数据质量、不同数据分布的参与节点的联邦学习贡献度等问题,提出一种基于生成式对抗网(GAN)的联邦学习贡献度评估算法,该算法通过联合模型筛选样本并生成数据标签,引入参与节点的本地数据标签分布平衡非独立同分布数据标签对贡献度评估的影响。
方案设计
出于联邦学习对数据隐私的保护,中心节点难以大量采样来自各参与节点的数据,该文章采用 GAN在保证数据隐私安全的同时生成大量高质量测试数据,该过程透明、可审计,为参与联邦学习任务的节点提供公平的贡献度评估方法。实现步骤如下:
-
中央节点训练GANT(生成器G和判别器D)模型,得到训练好的生成器G。
-
生成器G接受随机噪声z作为输入,生成仿真特征样本g(z)。
-
使用联合模型M对生成的样本g(z)进行筛选。
-
对于满足筛选条件的样本g(z),取argminc∈Ce{‖M(g(z)) - c‖}作为该样本的标签,形成测试数据集 D ‾ \overline{D} D,Ce 为数据标签的独热编码集合,c 为数据标签的独热编码
-
D ‾ i \overline{D}_i Di表示数据标签为第 i 类数据标签的数据。参与节点 k 的贡献度计算如下:
C o n t k = n ⋅ ∑ i F k , i ⋅ a c c ( M k , D ‾ i ) Cont_k = \sqrt{n} ⋅\sum_iF_{k,i} ⋅ acc(M_k,\overline{D}_i ) Contk=n⋅i∑