【题目整理】树上启发式合并dsu on tree

一篇写的很好的博客

dsu on tree思想简述

算法思想

树上启发式合并(dsu on tree)通常用于解决不带修改的树上子树查询的问题。一般情况下会在一次dfs中将所有子树的答案计算出来,然后对于每一次询问进行 O ( 1 ) O(1) O(1)查询。

整体算法利用dfs的思想,在dfs的同时不断更新当前答案。首先进行重链剖分,同时根据dfs序对整棵树进行重编号。对于每一个结点,暴力枚举自己的每一个轻儿子对这个结点产生的贡献,然后计算重儿子对这个结点产生的贡献。这样就可以算出这个结点的答案。然后暴力消除轻儿子带来的贡献,留下重儿子的贡献。

所谓留下重儿子的贡献,就是在dfs的过程中维护一个全局数组来记录答案(来解决空间不足的问题)。对于一个结点,我们需要用dfs去寻找每一个子结点产生的贡献。如果是重儿子,那么我们将这个贡献保留到全局当中去,因为重儿子的子树很大,查询很耗时,将其信息保存起来可以减少很多不必要的查询。如果是轻儿子,那么在查询完轻儿子时不在全局保留贡献,下次再用的时候,就下次再来搜,因为轻儿子数量很少,所以搜索时间不会太长。

重要性质:一个节点到根的路径上轻边个数不会超过 log ⁡ n \log n logn条。

算法整体时间复杂度: O ( n log ⁡ n ) O(n\log n) O(nlogn)

算法流程

  1. 先对整棵树根据dfs序进行重编号,同时进行树链剖分。
  2. dfs遍历整棵树。对于每一个结点,先依次遍历每一个轻儿子,将轻儿子的贡献加入到全局贡献中去;如果有重儿子,再遍历重儿子,将重儿子的贡献遍历到全局中去。查询完所有子结点后统计当前结点的答案。如果这个点是父结点的轻儿子,那么消除这个点的所带来的所有贡献。

例题

Luogu U41492 - 树上数颜色

题目链接

题目大意

给一棵有 n n n个点的、根为1的树,有 m m m次查询,每次询问某棵子树的颜色种类数。
( 1 ≤ n , m ≤ 1 0 5 ) (1\leq n,m \leq 10^5) (1n,m105)

题目解法

树上启发式合并的模板题。先对整个树进行树链剖分,同时对于每一个结点根据dfs序重编号。(下面代码中的odfs)

我们全局维护一个数组cnt,cnt[i]表示当前全局状态第 i i i个颜色的出现次数;维护一个变量ctot表示当前cnt数组中数量大于0的颜色数量。

然后对整棵树进行dfs,对于每一个结点:

  1. 对于当前结点的每一个轻儿子进行dfs。
  2. 如果当前结点有重儿子,对重儿子进行dfs。
  3. 对所有轻儿子,统计以其为根结点的子树的颜色数量。我们对树进行dfs序编号的目的,就是让子树的编号连续。这样暴力枚举每一个结点,更新全局信息。
  4. 把结点u的答案更新到全局信息。
  5. 通过当前全局的信息更新当前结点的答案。
  6. 如果这个点不是父结点的重儿子,则将这个点的子树的贡献从全局中删去。

一轮dfs后,一棵树的所有结点的答案就全部计算好了。接下来的 m m m次查询,直接 O ( 1 ) O(1) O(1)输出结果即可。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL; 
const LL N = 100050;

LL n, m, en = 0, tot = 0, ctot = 0;
LL front[N], son[N], sz[N], dfn[N], nod[N], l[N], r[N];
LL cnt[N], ans[N], c[N];

struct Edge {
	LL v, next;
}e[N * 4];

void addEdge(LL u, LL v) {
	e[++en] = {v, front[u]};
	front[u] = en;
}

void odfs(LL u, LL fa) {
	l[u] = ++tot;
	nod[tot] = u;
	sz[u] = 1;
	LL ms = 0;
	for (LL i = front[u]; i; i = e[i].next) {
		LL v = e[i].v;
		if (v == fa) continue;
		odfs(v, u);
		sz[u] += sz[v];
		if (ms < sz[v]) {
			ms = sz[v]; son[u] = v;
		}
	}
	r[u] = tot;
}

void add(LL u) {
	if (cnt[c[u]] == 0) ++ctot;
	++cnt[c[u]];
}

void del(LL u) {
	--cnt[c[u]];
	if (cnt[c[u]] == 0) --ctot;
}

void dfs(LL u, LL fa, bool kp) {
	for (LL i = front[u]; i; i = e[i].next) {
		LL v = e[i].v;
		if (v == fa or v == son[u]) continue;
		dfs(v, u, false);
	}
	if (son[u]) dfs(son[u], u, true);
	for (LL i = front[u]; i; i = e[i].next) {
		LL v = e[i].v;
		if (v == fa or v == son[u]) continue;
		for (LL j = l[v]; j <= r[v]; ++j) {
			add(nod[j]);
		}
	}
	add(u);
	ans[u] = ctot;
	if (kp == false) {
		for (LL i = l[u]; i <= r[u]; ++i) {
			del(nod[i]);
		}
	}
}

int main() {
	ios::sync_with_stdio(false);
	cin.tie(0); cout.tie(0);
	cin >> n;
	for (LL i = 1; i <= n; ++i) {
		front[i] = son[i] = 0;
	}
	for (LL i = 1; i < n; ++i) {
		LL x, y;
		cin >> x >> y;
		addEdge(x, y); addEdge(y, x);
	}
	for (LL i = 1; i <= n; ++i) {
		cin >> c[i];
	}
	odfs(1, 0);
	dfs(1, 0, false);
	cin >> m;
	for (LL i = 1; i <= m; ++i) {
		LL x;
		cin >> x;
		cout << ans[x] << endl;
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值