最大公约数和最小公倍数

最小公倍数=两数的乘积/最大公约(因)数,

最大公约数算法:

质因数分解法

质因数分解

质因数分解

质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。
把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数
例如:求6和15的最小公倍数。先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。

短除法

短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然
  后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。
短除法求最小公倍数,先用这几个数的公约数去除每一个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。[1]
短除法的格式

短除法的格式

短除法的本质就是质因数分解法,只是将质因数分解用短除符号来进行。
短除符号就是除号倒过来。短除就是在除法中写除数的地方写两个数共有的质因数,然后落下两个数被公有质因数整除的商,之后再除,以此类推,直到结果互质为止(两个数互质)。
而在用短除计算多个数时,对其中任意两个数存在的因数都要算出,其它没有这个因数的数则原样落下。直到剩下每两个都是互质关系。
求最大公因数便乘一边,求最小公倍数便乘一圈。
无论是短除法,还是分解质因数法,在质因数较大时,都会觉得困难。这时就需要用新的方法。

辗转相除法

古希腊数学家欧几里德

古希腊数学家欧几里德

辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法
一般地,如果求自然数a和b的最大公约数(a>b),那么
时,得
,这里
表示b整除a,而
表示b不能整除a。
时,设余数为
,根据整除的性质,有
时,得
时,设余数为
,于是
依次除下去,余数逐渐减小
,必能得到一个
,这时
,即
。由此得到:
这就是辗转相除法的原理。
辗转相除法的格式

辗转相除法的格式

例如,求(319,377):
∵ 377÷319=1(余58)
∴(377,319)=(319,58);
∵ 319÷58=5(余29),
∴ (319,58)=(58,29);
∵ 58÷29=2(余0),
∴ (58,29)= 29;
∴ (319,377)=29.
可以写成右边的格式。
用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。

更相减损法

刘徽《九章算术》

刘徽《九章算术》

更相减损法:也叫更相减损术,是出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,但它适用于任何需要求最大公约数的场合。
《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。”
翻译成现代语言如下:
第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。
第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。
则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数。
其中所说的“等数”,就是最大公约数。求“等数”的办法是“更相减损”法。所以更相减损法也叫等值算法
例1、用更相减损术求98与63的最大公约数。
解:由于63不是偶数,把98和63以大数减小数,并辗转相减:
98-63=35
63-35=28
35-28=7
28-7=21
21-7=14
14-7=7
所以,98和63的最大公约数等于7。
这个过程可以简单的写为:
(98,63)=(35,63)=(35,28)=(7,28)=(7,21)=(7,14)=(7,7)=7.
例2、用更相减损术求260和104的最大公约数。
解:由于260和104均为偶数,首先用2约简得到130和52,再用2约简得到65和26。
此时65是奇数而26不是奇数,故把65和26辗转相减:
65-26=39
39-26=13
26-13=13
所以,260与104的最大公约数等于13乘以第一步中约掉的两个2,即13*2*2=52。
这个过程可以简单地写为:
(260,104)=(65,26)=(39,26)=(13,26)=(13,13)=13.
比较辗转相除法与更相减损术的区别
(1)都是求最大公因数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。
(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值