- 博客(12)
- 收藏
- 关注
原创 关于数据处理相关
数据处理发展的过程是数据库-数据仓库-数据湖,数据处理技术发展的推动力是需要处理的数据规模,但是这些技术现在并不是相互替代的关系,而是相互配合,更好的服务于业务。
2024-06-01 23:17:02 584
原创 github上一些感兴趣的项目
DB-GPT为所有以数据库为基础的场景,构建一套完整的私有大模型解决方案。此方案因为支持本地部署,所以不仅仅可以应用于独立私有环境,而且还可以根据业务模块独立部署隔离,让大模型的能力绝对私有、安全、可控。该开源项目的开发团队的愿景是让围绕数据库构建大模型应用更简单,更方便。该开源项目支持私域知识库问答能力、提供统一多模型管理架构、提供一种统一的方式来存储和索引各种数据类型、提供 Agent 和插件机制,使得用户可以自定义并增强系统的行为。
2023-12-18 19:19:50 521 1
原创 标注工具labelme详细说明
LabelMe 是一个广泛使用的开源工具,专门用于图像标注和语义分割。它提供了一个平台,使用户能够手动标注图像并创建标签数据,用于训练机器学习模型或进行计算机视觉研究。他官方的开源代码在。使用完标注工具后直接叉掉就好了,所有标注数据都会保存在和图片相同的文件夹下面,当然,你可以自定义存储的文件夹,anaconda prompt也会结束程序,祝你们使用愉快!
2023-11-23 10:54:35 807 1
原创 leetcode刷题笔记--剑指offer
java中String类型的数据是不可改变的,直接使用String的一些方法都是低效的,转换成StringBuilder类型,再进行改动才是高效的。常用的方法有append(), delete(), substring()等。请实现一个函数,把字符串 s 中的每个空格替换成"%20"。输入:s = “We are happy.”输出:“We%20are%20happy.”
2023-08-14 21:03:53 135
原创 深度学习模型库detectron2的安装、使用和自定义数据集训练
一、介绍二、安装三、使用四、训练自己的数据集detectron2库是由facebookresearch团队开发的开源项目,github地址为,这里封装集成了很多深度学习的模型,包括基础的rcnn系列以及transform系列,详细了解可以查看官方文档,接下来介绍的安装使用训练都是基于官方文档的介绍。下面的安装使用训练都是基于centos系统的。其它环境请查阅官方文档。
2022-08-19 16:41:55 2966
原创 【无标题】linux配环境步骤
conda env list 查看conda环境中已存有的环境conda create -n zqr python=3.7 创建一个环境,名字 为zqr,python版本为3.7conda activate zqr激活这个环境进入到这个环境中去pip list查看这个环境中存有的依赖包nvcc -V安装torch时用得上,查看cuda版本,安装对应版本的torch,在官网中找到对应版本的下载代码即可conda remove env -n mgtv删除conda中的环境...
2022-03-14 08:38:26 106
原创 神经网络算法
例:从左到右为输入层(1)、隐藏层(2)、输出层(3),(在整个神经网络中我们还会用到偏置值bias),其中隐藏层可以有多个算法原理其中上标为层数,下标为该层中的某一个神经元,我们将公式中的用替代;将公式中的用替代;将公式中的用替代;这样,我们就可以将计算进行向量化:其中z是一个三维向量其中考虑到偏置值后,,加上偏置值,a成为了一个四维向量。其中g为激活函数,通过向量计算得到输出h简单的神经网络使用示例x1与x2的逻辑运算可以通过...
2021-11-17 09:09:03 315
原创 机器学习中对假设模型的评估
我们在假设一个模型来拟合数据集时,需要找到最合适的模型,不断地扩大数据集、增加提取特征是见效甚微的方法,比较好的是对数据集进行合理的划分,将整个数据集划分为三个部分:训练集、交叉检验集、测试集。其中,训练集占七成,用来训练假设模型,可获得训练误差(training error);检查检验集可以作为选择模型的依据,获得检查检验误差(cross validation error);测试及用来检测模型,获得测试误差(test error)。它们的计算过程如下:一般情况下,训练误差和检查检验误差会有如下的关
2021-11-17 09:08:50 2686
原创 支持向量机原理与高斯核函数
支持向量机原理首先先从线性回归下手,下面是线性回归的代价函数,目的是求出最优化参数θ将函数经过这样的变化:最终得到支持向量机的代价函数:其中c类似于正则化参数而支持向量机的假设模型是这样的:支持向量机选择决策边界的原理是:其中θ是决策边界在原点的法向量,例如下图:其中p^(i)是第i个样本点的向量在θ上的投影:由是s.t.的数学表达式:可知:当p^(i)越大,则所需要的θ范数(||θ||)就可以更小一点,支持向量机选择...
2021-11-17 09:08:31 1232
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人