欧拉函数euler

特整理欧拉函数的一些介绍,以便于一些知识的梳理,不做证明,只是知道如何利用即可。有时间再补充。
参考欧拉函数求法与应用
欧拉函数:小于n的正整数中与n互质的数的个数, φ(1)=1
通式: φ(n)=n(11p1)(11p2)(11p3)(11pn) , 其中 p1p2,,pn 为n的所有质因数,n是不为0的整数。(从一个正数的幂分解来理解, n=p1q1p2q2pnqn .)
性质:
若n是质数p的k次幂, φ(n)=pkpk1=(p1)pk1
若n为素数,则 φ(n)=n1
若n为奇数,则 φ(2n)=φ(n)
欧拉函数是积性函数:若m和n互质, φ(mn)=φ(m)φ(n) 。(即若 m,n)=1 φ(mn)=φ(m)φ(n)
除了 n=2 φ(n) 都是偶数。
欧拉公式的延伸:一个数的所有质因子之和是 φ(n)n/2

//直接求解欧拉函数
int euler(int n){ //返回euler(n)
     int res=n,a=n;
     for(int i=2;i*i<=a;i++){
         if(a%i==0){
             res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出 
             while(a%i==0) a/=i;
         }
     }
     if(a>1) res=res/a*(a-1);
     return res;
}

//筛选法打欧拉函数表
#define Max 1000001
int euler[Max];
void Init(){
     euler[1]=1;
     for(int i=2;i<Max;i++)
       euler[i]=i;
     for(int i=2;i<Max;i++)
        if(euler[i]==i)
           for(int j=i;j<Max;j+=i)
              euler[j]=euler[j]/i*(i-1);//先进行除法是为了防止中间数据的溢出
}

再补充一个费马小定理,参考费马小定理——从素数判定到RSA公钥加密体制
设p为质数,则对于每个与p互质的整数a, ap1 被p除的余数为1,即 ap1  1(mod p) . “ a  b(mod c) ”为同余符号,这是高斯发明的,表示a和b除以c得到相同的余数。我们以前学过的从2到 n 的试除法是指数级的(这里的复杂度要按照n的二进制形式位数N来算,由于 n=2N ,所以 n 可认为 2N 。2002年,三维印度数学家找到了素数判定的多项式算法,复杂度为 O((log n)6) ,说明素数判定是一个比较容易的问题。
根据费马小定理的逆否命题,如果 ap1 mod p<>1 ,则p一定是合数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值