YOLOv5之Focus与6x6卷积的理解 最近正在学习yolov5算法,以yolov5s模型为例,其中的foucs模块有何作用?之后被改成了一个k=6的卷积层,为什么较大的卷积核进行卷积比focus模块更有效呢?
Yolov4详解 文章目录前言一、Yolov4网络结构1.backbone:CSP Darknet-532.SPP池化3.PAN和Yolo head二、改进点1.Mosaic数据增强2.anchor偏移机制3.正负样本匹配4.Loss前言上一篇文章我们讨论了yolov3,yolov3在速度与精度上达到了一个较好的平衡,堪称经典之作,可惜在yolov3之后的原作者Joseph Redmon因为yolo的军事应用和对他人个人隐私风险而退出了yolo系列的研究,从此cv界痛失一员大将.但是经典之作总会源远流长,即使yolo原
YOLOv3详解 前言yolo算法是一种one-stage的目标检测算法,与two-stage最大区别在于,YOLO系列算法将图片划分成若干个网格,再基于anchor机制生成先验框,只用一步就生成检测框,这种方法大大提升了算法的预测速度,今天我们主要讲的是YOLOv4算法的主要实现过程,YOLOv4的论文于2020年发表在CVPR上,相对于YOLOv3的主要改动有以下几部分,mos.