LeetCode.70(746) Climbing Stairs && Min Cost Climbing Stairs (典型的动态规划求解Fibonacci问题)

题目70:

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note: Given n will be a positive integer.


Example 1:

Input: 2
Output:  2
Explanation:  There are two ways to climb to the top.

1. 1 step + 1 step
2. 2 steps

Example 2:

Input: 3
Output:  3
Explanation:  There are three ways to climb to the top.

1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step

分析:

class Solution {
    public int climbStairs(int n) {
        //fobinaco问题
        int [] f=new int[n+1];
        if(n==1) return 1;
        
        if(n==2) return 2; 
        
        f[1]=1;
        f[2]=2;
        for(int i=3;i<=n;i++){
            f[i]=f[i-1]+f[i-2];
        }
        return f[n];
        
    }
}

题目746:

On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).

Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.

Example 1:

Input: cost = [10, 15, 20]
Output: 15
Explanation: Cheapest is start on cost[1], pay that cost and go to the top.

Example 2:

Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
Output: 6
Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].

Note:

  1. cost will have a length in the range [2, 1000].
  2. Every cost[i] will be an integer in the range [0, 999].

分析:

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        //给定数组,其中各个数字代表需付出的代价,之后可以选择走一步或者两步。
        //求从0或者1下标开始到达最右边的最小代价是多少?
        //思路:对0和1分别进行贪心算法,之后选择最小的代价,每次判断下一步有两种选择,走一步或者两步
        
        //dp[i]表示到达i的最小代价,即前面的代价
        int[] dp=new int[cost.length+1];
        dp[0]=0;
        dp[1]=0;
        for(int i=2;i<=cost.length;i++){
            dp[i]=Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[cost.length];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值