灰度图像的8位平面分解

所谓灰度图像,即指8位256颜色的图像。将图像的每一位分别取出来,我们就可以将一幅图像分解开来,形成8幅图像。下面我们分别介绍使用matlab分解图像与使用halcon/c++分解图像的方法。

matlab8位分解

clc;
clear all;
A = imread('lena.tif');
% 显示原始图像
subplot(3,3,1);
imshow(A);title('原始图像');
% 显示8个位平面图像
for i=8:-1:1
    A_bitplane = bitshift(bitget(A,i),i-1);
    subplot(3, 3, 9-i+1);
    imshow(A_bitplane);
    title(['位平面 ' num2str(i)]);
end 

效果:





matlab8位合并复原

clc;
clear all;
A = imread('lena.tif');
Array=cell(1,8);
% 显示8个位平面图像
for i=8:-1:1
     Array{i} = bitshift(bitget(A,i),i-1);
end 

%%%复原
%%定义全0矩阵
[M,N]=size(Array{1});
B=zeros(M,N,'uint8');

for i=1:8
  B=bitset(B,i,bitget(Array{i},i));
end
figure;
subplot(1,2,1);
imshow(A);title('原始图像');
subplot(1,2,2)
imshow(B);title('复原后图像');



结果:



halcon分解

方法一,自己实现

void Bit()
{
  using namespace Halcon;

  cout << endl << "Shifting & cutting out bit values:" << endl;

  HByteImage image("mreut");
  HWindow  w(0,0,image.Width(),image.Height());
  w.SetPart(0,0,image.Height()-1,image.Width()-1);
  image.Display(w);

  int i;

  cout << "- cutting out bit slices" << endl; 
  for (i=0; i<8; i++) 
  {
    HRegion reg = (image & (1<<i)) != 0; //按照位切片
    w.ClearWindow();
    reg.Display(w);
    cout << "  & bit " << i << endl;
  }
 
}


方法二,使用自带函数

void Bit()
{
  using namespace Halcon;

  cout << endl << "Shifting & cutting out bit values:" << endl;

  HByteImage image("mreut");
  HWindow  w(0,0,image.Width(),image.Height());
  w.SetPart(0,0,image.Height()-1,image.Width()-1);
  image.Display(w);

  int i;
  cout << "- cutting out bit slices2" << endl;
  for (i = 0; i < 8; i++)
  {
	  HRegion reg = (image.BitSlice(i+1)) != 0; //按照位切片
	  w.ClearWindow();
	  reg.Display(w);
	  cout << "  & bit " << i << endl;
  }

}

附加matlab一个好的教程:

参考文献:












阅读更多

扫码向博主提问

xiamentingtao

随便问吧,无论学术还是人生
  • 擅长领域:
  • cv
  • math
  • 考博
  • 算法
  • AI
去开通我的Chat快问
版权声明:本文为博主原创文章,转载请注明原地址。 https://blog.csdn.net/xiamentingtao/article/details/52398679
个人分类: 图像处理 halcon
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭