6.二叉搜索树

一、二叉搜索树的定义

在这里插入图片描述

二、二叉搜索树操作集

在这里插入图片描述

三、二叉搜索树的操作集

#include <stdio.h>
/*二叉搜索树*/


typedef struct TreeNode *BinTree;
typedef BinTree Position;
struct TreeNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};


/*二叉搜索树的查找递归操作*/
Position Find(ElementType X, BinTree BST)
{
    if(!BST)return NULL;
    if(X > BST->Data)
        return Find(X, BST->Right);
    else if(X < BST->Data)
        return Find(X, BST->Left);
    else
        return BST;
}


/*二叉搜索树的非递归查找*/
Position IterFind(ElementType X, BinTree BST)
{
    while(BST){
        if(X > BST->Data)
            BST = BST->Right;
        else if(X < BST->Data)
            BST = BST->Left;
        else
            return BST;
    }
    return NULL;
}
/*查找最小元素的递归函数*/
Position FindMin( BinTree BST )
{
     if( !BST )
         return NULL; /*空的二叉搜索树,返回NULL*/
     else if( !BST->Left )
         return BST; /*找到最左叶结点并返回*/
     else
         return FindMin( BST->Left ); /*沿左分支继续查找*/
}




/*查找最大元素的迭代函数*/
Position FindMax( BinTree BST )
{
     if(BST )
         while( BST->Right ) BST = BST->Right;
         /*沿右分支继续查找,直到最右叶结点*/
             return BST;
}


/*二叉树的插入*/
BinTree Insert( BinTree BST, ElementType X )
{
    if( !BST ){ /* 若原树为空,生成并返回一个结点的二叉搜索树 */
        BST = (BinTree)malloc(sizeof(struct TNode));
        BST->Data = X;
        BST->Left = BST->Right = NULL;
    }
    else { /* 开始找要插入元素的位置 */
        if( X < BST->Data )
            BST->Left = Insert( BST->Left, X );   /*递归插入左子树*/
        else  if( X > BST->Data )
            BST->Right = Insert( BST->Right, X ); /*递归插入右子树*/
        /* else X已经存在,什么都不做 */
    }
    return BST;
}


/*二叉树的删除*/
BinTree Delete( BinTree BST, ElementType X )
{
    Position Tmp;
    if( !BST )
        printf("要删除的元素未找到");
    else {
        if( X < BST->Data )
            BST->Left = Delete( BST->Left, X );   /* 从左子树递归删除 */
        else if( X > BST->Data )
            BST->Right = Delete( BST->Right, X ); /* 从右子树递归删除 */
        else { /* BST就是要删除的结点 */
            /* 如果被删除结点有左右两个子结点 */
            if( BST->Left && BST->Right ) {
                /* 从右子树中找最小的元素填充删除结点 */
                Tmp = FindMin( BST->Right );
                BST->Data = Tmp->Data;
                /* 从右子树中删除最小元素 */
                BST->Right = Delete( BST->Right, BST->Data );
            }
            else { /* 被删除结点有一个或无子结点 */
                Tmp = BST;
                if( !BST->Left )       /* 只有右孩子或无子结点 */
                    BST = BST->Right;
                else                   /* 只有左孩子 */
                    BST = BST->Left;
                free( Tmp );
            }
        }
    }
    return BST;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值