一、二叉搜索树的定义
二、二叉搜索树操作集
三、二叉搜索树的操作集
#include <stdio.h>
/*二叉搜索树*/
typedef struct TreeNode *BinTree;
typedef BinTree Position;
struct TreeNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
/*二叉搜索树的查找递归操作*/
Position Find(ElementType X, BinTree BST)
{
if(!BST)return NULL;
if(X > BST->Data)
return Find(X, BST->Right);
else if(X < BST->Data)
return Find(X, BST->Left);
else
return BST;
}
/*二叉搜索树的非递归查找*/
Position IterFind(ElementType X, BinTree BST)
{
while(BST){
if(X > BST->Data)
BST = BST->Right;
else if(X < BST->Data)
BST = BST->Left;
else
return BST;
}
return NULL;
}
/*查找最小元素的递归函数*/
Position FindMin( BinTree BST )
{
if( !BST )
return NULL; /*空的二叉搜索树,返回NULL*/
else if( !BST->Left )
return BST; /*找到最左叶结点并返回*/
else
return FindMin( BST->Left ); /*沿左分支继续查找*/
}
/*查找最大元素的迭代函数*/
Position FindMax( BinTree BST )
{
if(BST )
while( BST->Right ) BST = BST->Right;
/*沿右分支继续查找,直到最右叶结点*/
return BST;
}
/*二叉树的插入*/
BinTree Insert( BinTree BST, ElementType X )
{
if( !BST ){ /* 若原树为空,生成并返回一个结点的二叉搜索树 */
BST = (BinTree)malloc(sizeof(struct TNode));
BST->Data = X;
BST->Left = BST->Right = NULL;
}
else { /* 开始找要插入元素的位置 */
if( X < BST->Data )
BST->Left = Insert( BST->Left, X ); /*递归插入左子树*/
else if( X > BST->Data )
BST->Right = Insert( BST->Right, X ); /*递归插入右子树*/
/* else X已经存在,什么都不做 */
}
return BST;
}
/*二叉树的删除*/
BinTree Delete( BinTree BST, ElementType X )
{
Position Tmp;
if( !BST )
printf("要删除的元素未找到");
else {
if( X < BST->Data )
BST->Left = Delete( BST->Left, X ); /* 从左子树递归删除 */
else if( X > BST->Data )
BST->Right = Delete( BST->Right, X ); /* 从右子树递归删除 */
else { /* BST就是要删除的结点 */
/* 如果被删除结点有左右两个子结点 */
if( BST->Left && BST->Right ) {
/* 从右子树中找最小的元素填充删除结点 */
Tmp = FindMin( BST->Right );
BST->Data = Tmp->Data;
/* 从右子树中删除最小元素 */
BST->Right = Delete( BST->Right, BST->Data );
}
else { /* 被删除结点有一个或无子结点 */
Tmp = BST;
if( !BST->Left ) /* 只有右孩子或无子结点 */
BST = BST->Right;
else /* 只有左孩子 */
BST = BST->Left;
free( Tmp );
}
}
}
return BST;
}