并查集--学习详解 (例hdu1232畅通工程)

 

昨天和今天学习了并查集和trie树,并练习了三道入门题目,理解更为深刻,觉得有必要总结一下,这其中的内容定义之类的是取自网络,操作的说明解释及程序的注释部分为个人理解。

   
并查集学习:

l         并查集:(union-find sets)

一种简单的用途广泛的集合. 并查集是若干个不相交集合,能够实现较快的合并和判断元素所在集合的操作,应用很多,如其求无向图的连通分量个数等。最完美的应用当属:实现Kruskar算法求最小生成树。

l         并查集的精髓(即它的三种操作,结合实现代码模板进行理解):

1、Make_Set(x) 把每一个元素初始化为一个集合

初始化后每一个元素的父亲节点是它本身,每一个元素的祖先节点也是它本身(也可以根据情况而变)。

2、Find_Set(x) 查找一个元素所在的集合

查找一个元素所在的集合,其精髓是找到这个元素所在集合的祖先!这个才是并查集判断和合并的最终依据。
判断两个元素是否属于同一集合,只要看他们所在集合的祖先是否相同即可。
合并两个集合,也是使一个集合的祖先成为另一个集合的祖先,具体见示意图

3、Union(x,y) 合并x,y所在的两个集合

合并两个不相交集合操作很简单:
利用Find_Set找到其中两个集合的祖先,将一个集合的祖先指向另一个集合的祖先。如图



 

l         并查集的优化

1、Find_Set(x)时 路径压缩
寻找祖先时我们一般采用递归查找,但是当元素很多亦或是整棵树变为一条链时,每次Find_Set(x)都是O(n)的复杂度,有没有办法减小这个复杂度呢?
答案是肯定的,这就是路径压缩,即当我们经过"递推"找到祖先节点后,"回溯"的时候顺便将它的子孙节点都直接指向祖先,这样以后再次Find_Set(x)时复杂度就变成O(1)了,如下图所示;可见,路径压缩方便了以后的查找。

 

2、Union(x,y)时 按秩合并
即合并的时候将元素少的集合合并到元素多的集合中,这样合并之后树的高度会相对较小。(将深度较小的树指到深度较大的树的根上)



l         主要代码实现

 


 01 int father[MAX];   /* father[x]表示x的父节点*/
02 int rank[MAX];     /* rank[x]表示x的秩*/
03  
04  
05 /* 初始化集合*/                                             
06 void Make_Set(int x)                                                   void creat(int x)
07 {                                                                             {
08     father[x] = x; //根据实际情况指定的父节点可变化                 father[x]=x;

09    rank[x] = 0;   //根据实际情况初始化秩也有所变化                   rank[x]=1;//统计这个集合里有 10 }                                                                               }                     多少个元素

将一个集合的祖先指向另一个集合的祖先。如图
1 /* 查找x元素所在的集合,回溯时压缩路径*/                                         
2 int Find_Set(int x) 
3  { 
4     if (x != father[x]) 
5     { 
6          father[x] = Find_Set(father[x]); //这个回溯时的压缩路径是精华 
7      } 
8      return father[x]; 
9 }
01     按秩合并x,y所在的集合 
02     下面的那个if else结构不是绝对的,具体根据情况变化 
03     但是,宗旨是不变的即,按秩合并,实时更新秩。 
04 */ 
   5  void Union(int x, int y) 
06  { 
07      x = Find_Set(x); 
08      y = Find_Set(y); 
09      if (x == y) return; 
10     if (rank[x] > rank[y])  
11     { 
12          father[y] = x; 
13     } 
14      else
15      { 
16          if (rank[x] == rank[y]) 
17          { 
18              rank[y]++; 
19         } 
20          father[x] = y; 
21      } 
22 }
                                                              从其他一些地方看到的这样写的:
                                                                 void Union(int a,int b)   {   
                                                                      int l1=Find(a);
                                                                       int l2=Find(b);       
                                                                 if(l1==l2) return;     
                                                                 if(rank[l1]>rank[l2])   {         
                                                                       father[l2]=l1; 
                                                                       rank[l1]=rank[l2]+rank[l1];     
                                                                    }     
                                                                 else    
                                                                 {    //if(rank[l1]==rank[ l2]) 
                                                                      //rank[l2]++;    
                                                                     father[l1]=l2;
                                                                     rank[l2]=rank[l2]+rank[l1]; 
                                                                   }  
                                                                  }
 
 
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/EnjoyInwind/archive/2011/02/24/6206058.aspx

 

另外,我认为写并查集时涉及到的路径压缩,最好用递归,一方面代码的可读性非常好,另一方面,可以更直观的理解路径压缩时在回溯时完成的巧妙。

对hdu1232的思路:
只需要将各对元素加入并查集, 最后扫描集合的个数 nCount , 所以最后需要修的路为 nCount - 1 : n 点之间有 n - 1条边.
01 #include <iostream> 

02 using namespace std; 

03 int Father[1005]; //表示x的父节点  

04 int Rank[1005];     //表示x的秩  

05 void MakeSet(int x) 

06 { 

07     Father[x] = x; 

08     Rank[x] = 0;     

09 } 

10 int FindSet(int x) 

11 { 

12     if(Father[x] != x) 

13     { 

14         Father[x] = FindSet(Father[x]); 

15     } 

16     return Father[x]; 

17 } 

18 void Union(int x, int y) 

19 { 

20     x = FindSet(x); 

21     y = FindSet(y); 

22       

23     if(x == y) return; 

24     if(Rank[x] > Rank[y]) 

26         Father[y] = x; 

28     else

       {  

           if(Rank[x]==Rank[y])

               Rank[y]++;

32         Father[x] = y;

         } 

34 }  

35 int main() 

36 { 

37     int n,m; 

38     while(scanf("%d%d",&n,&m) && n) 

39     { 

40         int i,x,y; 

41         for(i = 1 ; i <= n;i++) 

42             MakeSet(i); 

43         for(i = 0 ; i < m ; i++) 

44         { 

45             scanf("%d%d",&x,&y); 

46             Union(x,y);  

47         } 

48         int cnt = 0; 

49         for(i = 1; i <= n; i++) 

50             if(Father[i] == i) 

51                 cnt++; 

52         printf("%d/n",cnt - 1);  

53     } 

54     return 0; 

55 }

比较通俗易懂的理解。。。。

下面的是一网友的全面分析过程:

首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的。最后要解决的是整幅图的连通

性问题。比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块。像畅

通工程这题,问还需要修几条路,实质就是求有几个连通分支。如果是1个连通分支,说明整幅图上的点都连起来了,不用再修路了;如

果是2个连通分支,则只要再修1条路,从两个分支中各选一个点,把它们连起来,那么所有的点都是连起来的了;如果是3个连通分支,

则只要再修两条路……

以下面这组数据输入数据来说明

4 2 1 3 4 3

第一行告诉你,一共有4个点,2条路。下面两行告诉你,1、3之间有条路,4、3之间有条路。那么整幅图就被分成了1-3-4和2两部分。

只要再加一条路,把2和其他任意一个点连起来,畅通工程就实现了,那么这个这组数据的输出结果就是1。好了,现在编程实现这个功能

吧,城镇有几百个,路有不知道多少条,而且可能有回路。 这可如何是好?

我以前也不会呀,自从用了并查集之后,嗨,效果还真好!我们全家都用它!

并查集由一个整数型的数组和两个函数构成。数组pre[]记录了每个点的前导点是什么,函数find是查找,join是合并。

int pre[1000 ];

int find(int x){ //查找根节点

int r=x; while (pre[r ]!=r) r=pre[r ]; //路径压缩

int i=x; int j; while(i!=r) { j=pre[i ]; pre[i ]=r; i=j; } //返回根节点

return r;

void join(int x,int y) { //判断x y是否连通

//如果已经连通,就不用管了 //如果不连通,就把它们所在的连通分支合并起,

int fx=find(x),fy=find(y);

if(fx!=fy) pre[fx ]=fy; }

为了解释并查集的原理,我将举一个更有爱的例子。 话说江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天

背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们有一个优点就是讲义气,绝对不打自己的朋友。而且

他们信奉“朋友的朋友就是我的朋友”,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己人。这样一来,江湖上就

形成了一个一个的群落,通过两两之间的朋友关系串联起来。而不在同一个群落的人,无论如何都无法通过朋友关系连起来,于是就可

以放心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?

我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物,这样,每个圈子就可以这样命名“齐达内朋友之队”“罗纳

尔多朋友之队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。

但是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长,要判断自己的队长是谁,只能漫无目的的通过朋友的

朋友关系问下去:“你是不是队长?你是不是队长?”这样一来,队长面子上挂不住了,而且效率太低,还有可能陷入无限循环中。于是

队长下令,重新组队。队内所有人实行分等级制度,形成树状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要

记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就可以在短时间内确定队长是谁了。由于我们关

心的只是两个人之间是否连通,至于他们是如何连通的,以及每个圈子内部的结构是怎样的,甚至队长是谁,并不重要。所以我们可以

放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。

 

下面我们来看并查集的实现。 int pre[1000]; 这个数组,记录了每个大侠的上级是谁。大侠们从1或者0开始编号(依据题意而定),

pre[15]=3就表示15号大侠的上级是3号大侠。如果一个人的上级就是他自己,那说明他就是掌门人了,查找到此为止。也有孤家寡人

自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛同学只知道自己的上级是杨左使。张无忌

是谁?不认识!要想知道自己的掌门是谁,只能一级级查上去。 find这个函数就是找掌门用的,意义再清楚不过了(路径压缩算法先

不论,后面再说)。

int find(int x) { //查找根节点

int r=x; while (pre[r ]!=r)//如果我的上级不是掌门

r=pre[r ];//我就接着找他的上级,直到找到掌门为止。

//返回根节点

return r;//掌门驾到~~~

} 再来看看join函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个板块的所有点就都可以互通了。这在图上很好办,画

条线就行了。但我们现在是用并查集来描述武林中的状况的,一共只有一个pre[]数组,该如何实现呢? 还是举江湖的例子,假设现在武

林中的形势如图所示。虚竹小和尚与周芷若MM是我非常喜欢的两个人物,他们的终极boss分别是玄慈方丈和灭绝师太,那明显就是两个

阵营了。我不希望他们互相打架,就对他俩说:“你们两位拉拉勾,做好朋友吧。”他们看在我的面子上,同意了。这一同意可非同小可,

整个少林和峨眉派的人就不能打架了。这么重大的变化,可如何实现呀,要改动多少地方?其实非常简单,我对玄慈方丈说:“大师,麻

烦你把你的上级改为灭绝师太吧。这样一来,两派原先的所有人员的终极boss都是师太,那还打个球啊!反正我们关心的只是连通性,

门派内部的结构不要紧的。”玄慈一听肯定火大了:“我靠,凭什么是我变成她手下呀,怎么不反过来?我抗议!”抗议无效,上天安排的,

最大。反正谁加入谁效果是一样的,我就随手指定了一个。这段函数的意思很明白了吧?

void join(int x,int y)//我想让虚竹和周芷若做朋友

{ int fx=find(x),fy=find(y); //虚竹的老大是玄慈,

芷若MM的老大是灭绝

if(fx!=fy)//玄慈和灭绝显然不是同一个人

pre[fx ]=fy;//方丈只好委委屈屈地当了师太的手下啦

}

再来看看路径压缩算法。建立门派的过程是用join函数两个人两个人地连接起来的,谁当谁的手下完全随机。最后的树状结构会变成什么

胎唇样,我也完全无法预计,一字长蛇阵也有可能。这样查找的效率就会比较低下。最理想的情况就是所有人的直接上级都是掌门,一

共就两级结构,只要找一次就找到掌门了。哪怕不能完全做到,也最好尽量接近。这样就产生了路径压缩算法。 设想这样一个场景:两

个互不相识的大侠碰面了,想知道能不能揍。 于是赶紧打电话问自己的上级:“你是不是掌门?” 上级说:“我不是呀,我的上级是谁谁

谁,你问问他看看。” 一路问下去,原来两人的最终boss都是东厂曹公公。 “哎呀呀,原来是记己人,西礼西礼,在下三营六组白面葫

芦娃!” “幸会幸会,在下九营十八组仙子狗尾巴花!” 两人高高兴兴地手拉手喝酒去了。 “等等等等,两位同学请留步,还有事情没完

成呢!”我叫住他俩。 “哦,对了,还要做路径压缩。”两人醒悟。 白面葫芦娃打电话给他的上级六组长:“组长啊,我查过了,其习偶

们的掌门是曹公公。不如偶们一起及接拜在曹公公手下吧,省得级别太低,以后查找掌门麻环。” “唔,有道理。” 白面葫芦娃接着打电

话给刚才拜访过的三营长……仙子狗尾巴花也做了同样的事情。 这样,查询中所有涉及到的人物都聚集在曹公公的直接领导下。每次查

询都做了优化处理,所以整个门派树的层数都会维持在比较低的水平上。路径压缩的代码,看得懂很好,看不懂也没关系,直接抄上用

就行了。总之它所实现的功能就是这么个意思。

 

回到开头提出的问题,我的代码如下:

#include int pre[1000 ];

int find(int x) {

int r=x;

while (pre[r ]!=r)

r=pre[r ];

int i=x; int j;

while(i!=r)

{

j=pre[i ]; pre[i ]=r; i=j;

}

return r;

}

int main()

{ int n,m,p1,p2,i,total,f1,f2;

while(scanf("%d",&n) && n)//读入n,如果n为0,结束 { //刚开始的时候,有n个城镇,一条路都没有

//那么要修n-1条路才能把它们连起来

total=n-1;

//每个点互相独立,自成一个集合,从1编号到n //所以每个点的上级都是自己

for(i=1;i<=n;i++) { pre[i ]=i; } //共有m条路

scanf("%d",&m); while(m--) { //下面这段代码,其实就是join函数,只是稍作改动以适应题目要求

//每读入一条路,看它的端点p1,p2是否已经在一个连通分支里了

scanf("%d %d",&p1,&p2);

f1=find(p1); f2=find(p2);

//如果是不连通的,那么把这两个分支连起来

//分支的总数就减少了1,还需建的路也就减了1

if(f1!=f2) { pre[f2 ]=f1; total--;

}

//如果两点已经连通了,那么这条路只是在图上增加了一个环 //对连通性没有任何影响,无视掉

}

//最后输出还要修的路条数

printf("%d/n",total); } return 0;

}

 

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/EnjoyInwind/archive/2011/02/24/6206058.aspx

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/EnjoyInwind/archive/2011/02/24/6206058.aspx
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值