技巧
编程技巧:递归、递归树
工程思路:并行
10 | 递归:如何用三行代码找到“最终推荐人”?
电影院座位第几排
什么是递归?
- 递归是一种非常高效、简洁的编码技巧,一种应用非常广泛的算法,比如DFS深度优先搜索、前中后序二叉树遍历等都是使用递归。
- 方法或函数调用自身的方式称为递归调用,调用称为递,返回称为归。
- 基本上,所有的递归问题都可以用递推公式来表示,比如
f(n) = f(n-1) + 1; f(1) = 1
f(n) = f(n-1) + f(n-2); f(1) = 1; f(2) = 2;
f(n)=n*f(n-1); f(0) = 1
为什么使用递归?递归的优缺点?
- 优点:代码的表达力很强,写起来简洁。
- 缺点:空间复杂度高、有堆栈溢出风险、存在重复计算、过多的函数调用会耗时较多等问题。
什么样的问题可以用递归解决呢?
一个问题只要同时满足以下3个条件,就可以用递归来解决:
- 问题的解可以分解为几个子问题的解。何为子问题?就是数据规模更小的问题。
- 问题与子问题,除了数据规模不同,求解思路完全一样
- 存在递归终止条件
如何实现递归?
- 递归代码编写
写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。
- 递归代码理解
对于递归代码,若试图想清楚整个递和归的过程,实际上是进入了一个思维误区。
那该如何理解递归代码呢?如果一个问题A可以分解为若干个子问题B、C、D,你可以假设子问题B、C、D已经解决。而且,你只需要思考问题A与子问题B、C、D两层之间的关系即可,不需要一层层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。屏蔽掉递归细节,这样子理解起来就简单多了。
因此,理解递归代码,就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。
递归常见问题及解决方案
- 警惕堆栈溢出:可以声明一个全局变量来控制递归的深度,从而避免堆栈溢出。
由于递归算法是基于计算机内部的函数调用栈的数据结构,每调用一次函数,就执行入栈操作,函数返回时才执行出栈操作,因此当函数调用层次太多,就有可能发生栈溢出的问题。
- 警惕重复计算:通过某种数据结构(比如散列表)来保存已经求解过的值,从而避免重复计算。
如何将递归改写为非递归代码?
笼统的讲,所有的递归代码都可以改写为迭代循环的非递归写法。如何做?抽象出递推公式、初始值和边界条件,然后用迭代循环实现。
思考
我们平时调试代码喜欢使用 IDE 的单步跟踪功能,像规模比较大、递归层次很深的递归代码,几乎无法使用这种调试方式。对于递归代码,你有什么好的调试方法呢?
27 | 递归树:如何借助树来求解递归算法的时间复杂度?
递归树
我们前面讲过,递归的思想就是,将大问题分解为小问题来求解,然后再将小问题分解为小小问题。这样一层一层地分解,直到问题的数据规模被分解得足够小,不用继续递归分解为止。
如果我们把这个一层一层的分解过程画成图,它其实就是一棵树。我们给这棵树起一个名字,叫作递归树。
斐波那契数列的递归树
一棵斐波那契数列的递归树,你可以看看。节点里的数字表示数据的规模,一个节点的求解可以分解为左右子节点两个问题的求解。
归并排序的递归树
归并排序每次会将数据规模一分为二。我们把归并排序画成递归树,就是下面这个样子:
因为每次分解都是一分为二,所以代价很低,我们把时间上的消耗记作常量 1。归并算法中比较耗时的是归并操作,也就是把两个子数组合并为大数组。从图中我们可以看出,每一层归并操作消耗的时间总和是一样的,跟要排序的数据规模有关。我们把每一层归并操作消耗的时间记作 n。
现在,我们只需要知道这棵树的高度 h,用高度 h 乘以每一层的时间消耗 n,就可以得到总的时间复杂度 O(n*h)。
从归并排序的原理和递归树,可以看出来,归并排序递归树是一棵满二叉树。我们前两节中讲到,满二叉树的高度大约是 Logn,所以,归并排序递归实现的时间复杂度就是 O(nlog n)。
实战一:分析快速排序的时间复杂度
快速排序的过程中,每次分区都要遍历待分区区间的所有数据,所以,每一层分区操作所遍历的数据的个数之和就是 n。我们现在只要求出递归树的高度 h,这个快排过程遍历的数据个数就是 hn ,也就是说,时间复杂度就是 O(nh)。那快排的时间复杂度就是 O(nlog n)。
实战二:分析斐波那契数列的时间复杂度
所以,这个算法的时间复杂度就介于 O(2^n) 和 O(2^n/2) 之间。虽然这样得到的结果还不够精确,只是一个范围,但是我们也基本上知道了上面算法的时间复杂度是指数级的,非常高。
实战三:分析全排列的时间复杂度
全排列的递归算法的时间复杂度大于 O(n!),小于 O(n∗n!),虽然我们没法知道非常精确的时间复杂度,但是这样一个范围已经让我们知道,全排列的时间复杂度是非常高的。
内容小结
两种递归代码的时间复杂度分析方法
- 递推公式的时间复杂度分析方法
- 递归树分析了递归代码的时间复杂度
有些代码比较适合用递推公式来分析,比如归并排序的时间复杂度、快速排序的最好情况时间复杂度;有些比较适合采用递归树来分析,比如快速排序的平均时间复杂度。而有些可能两个都不怎么适合使用,比如二叉树的递归前中后序遍历。
课后思考
- 1 个细胞的生命周期是 3 小时,1 小时分裂一次。求 n 小时后,容器内有多少细胞?请你用已经学过的递归时间复杂度的分析方法,分析一下这个递归问题的时间复杂度。
假设细胞先分裂再死亡,即,每个细胞分裂三次后死亡(存活三个小时)。
n 从第 0 个小时开始,
n = 0,f(0) = 1
n = 1,f(1) = 2*f(1)
n = 2,f(2) = 2*f(1)
n = 3,f(3) = 2*f(2) - f(0) ,减去存活了三个小时的细胞个数。
n = 4,f(4) = 2*f(3) - f(1),减去存活了三个小时的细胞个数。
以此类推:
f(n) = 2*f(n-1) - f(n-3),减去存活了三个小时的细胞个数。
工程思路
51 | 并行算法:如何利用并行处理提高算法的执行效率?
算法的目的就是为了提高代码执行的效率。那当算法无法再继续优化的情况下,我们该如何来进一步提高执行效率呢?我们今天就讲一种非常简单但又非常好用的优化方法,那就是并行计算。
并行排序
假设我们要给大小为 8GB 的数据进行排序,并且,我们机器的内存可以一次性容纳这么多数据。对于排序来说,最常用的就是时间复杂度为 O(nlogn) 的三种排序算法,归并排序、快速排序、堆排序。从理论上讲,这个排序问题,已经很难再从算法层面优化了。而利用并行的处理思想,我们可以很轻松地将这个给 8GB 数据排序问题的执行效率提高很多倍。具体的实现思路有下面两种。
- 第一种是对归并排序并行化处理。我们可以将这 8GB 的数据划分成 16 个小的数据集合,每个集合包含 500MB 的数据。我们用 16 个线程,并行地对这 16 个 500MB 的数据集合进行排序。这 16 个小集合分别排序完成之后,我们再将这 16 个有序集合合并。
- 第二种是对快速排序并行化处理。我们通过扫描一遍数据,找到数据所处的范围区间。我们把这个区间从小到大划分成 16 个小区间。我们将 8GB 的数据划分到对应的区间中。针对这 16 个小区间的数据,我们启动 16 个线程,并行地进行排序。等到 16 个线程都执行结束之后,得到的数据就是有序数据了。
对比这两种处理思路,它们利用的都是分治的思想,对数据进行分片,然后并行处理。它们的区别在于,第一种处理思路是,先随意地对数据分片,排序之后再合并。第二种处理思路是,先对数据按照大小划分区间,然后再排序,排完序就不需要再处理了。这个跟归并和快排的区别如出一辙。
这里我还要多说几句,如果要排序的数据规模不是 8GB,而是 1TB,那问题的重点就不是算法的执行效率了,而是数据的读取效率。因为 1TB 的数据肯定是存在硬盘中,无法一次性读取到内存中,这样在排序的过程中,就会有频繁地磁盘数据的读取和写入。如何减少磁盘的 IO 操作,减少磁盘数据读取和写入的总量,就变成了优化的重点。不过这个不是我们这节要讨论的重点,你可以自己思考下。
并行查找
散列表是一种非常适合快速查找的数据结构。
如果我们是给动态数据构建索引,在数据不断加入的时候,散列表的装载因子就会越来越大。为了保证散列表性能不下降,我们就需要对散列表进行动态扩容。对如此大的散列表进行动态扩容,一方面比较耗时,另一方面比较消耗内存。比如,我们给一个 2GB 大小的散列表进行扩容,扩展到原来的 1.5 倍,也就是 3GB 大小。这个时候,实际存储在散列表中的数据只有不到 2GB,所以内存的利用率只有 60%,有 1GB 的内存是空闲的。
实际上,我们可以将数据随机分割成 k 份(比如 16 份),每份中的数据只有原来的 1/k,然后我们针对这 k 个小数据集合分别构建散列表。这样,散列表的维护成本就变低了。当某个小散列表的装载因子过大的时候,我们可以单独对这个散列表进行扩容,而其他散列表不需要进行扩容。
还是刚才那个例子,假设现在有 2GB 的数据,我们放到 16 个散列表中,每个散列表中的数据大约是 150MB。当某个散列表需要扩容的时候,我们只需要额外增加 150*0.5=75MB 的内存(假设还是扩容到原来的 1.5 倍)。不管从扩容的执行效率还是内存的利用率上,这种多个小散列表的处理方法,都要比大散列表高效。
当我们要查找某个数据的时候,我们只需要通过 16 个线程,并行地在这 16 个散列表中查找数据。这样的查找性能,比起一个大散列表的做法,也并不会下降,反倒有可能提高。
当往散列表中添加数据的时候,我们可以选择将这个新数据放入装载因子最小的那个散列表中,这样也有助于减少散列冲突。
并行字符串匹配
我们前面学过,在文本中查找某个关键词这样一个功能,可以通过字符串匹配算法来实现。我们之前学过的字符串匹配算法有 KMP、BM、RK、BF 等。当在一个不是很长的文本中查找关键词的时候,这些字符串匹配算法中的任何一个,都可以表现得非常高效。但是,如果我们处理的是超级大的文本,那处理的时间可能就会变得很长,那有没有办法加快匹配速度呢?
我们可以把大的文本,分割成 k 个小文本。假设 k 是 16,我们就启动 16 个线程,并行地在这 16 个小文本中查找关键词,这样整个查找的性能就提高了 16 倍。16 倍效率的提升,从理论的角度来说并不多。但是,对于真实的软件开发来说,这显然是一个非常可观的优化。
不过,这里还有一个细节要处理,那就是原本包含在大文本中的关键词,被一分为二,分割到两个小文本中,这就会导致尽管大文本中包含这个关键词,但在这 16 个小文本中查找不到它。实际上,这个问题也不难解决,我们只需要针对这种特殊情况,做一些特殊处理就可以了。
我们假设关键词的长度是 m。我们在每个小文本的结尾和开始各取 m 个字符串。前一个小文本的末尾 m 个字符和后一个小文本的开头 m 个字符,组成一个长度是 2m 的字符串。我们再拿关键词,在这个长度为 2m 的字符串中再重新查找一遍,就可以补上刚才的漏洞了。
并行搜索
前面我们学习过好几种搜索算法,它们分别是广度优先搜索、深度优先搜索、Dijkstra 最短路径算法、A* 启发式搜索算法。对于广度优先搜索算法,我们也可以将其改造成并行算法。
广度优先搜索是一种逐层搜索的搜索策略。基于当前这一层顶点,我们可以启动多个线程,并行地搜索下一层的顶点。在代码实现方面,原来广度优先搜索的代码实现,是通过一个队列来记录已经遍历到但还没有扩展的顶点。现在,经过改造之后的并行广度优先搜索算法,我们需要利用两个队列来完成扩展顶点的工作。
假设这两个队列分别是队列 A 和队列 B。多线程并行处理队列 A 中的顶点,并将扩展得到的顶点存储在队列 B 中。等队列 A 中的顶点都扩展完成之后,队列 A 被清空,我们再并行地扩展队列 B 中的顶点,并将扩展出来的顶点存储在队列 A。这样两个队列循环使用,就可以实现并行广度优先搜索算法。
总结引申
上一节,我们通过实际软件开发中的“索引”这一技术点,回顾了之前学过的一些支持动态数据集合的数据结构。今天,我们又通过“并行算法”这个话题,回顾了之前学过的一些算法。
今天的内容比较简单,没有太复杂的知识点。我通过一些例子,比如并行排序、查找、搜索、字符串匹配,给你展示了并行处理的实现思路,也就是对数据进行分片,对没有依赖关系的任务,并行地执行。
并行计算是一个工程上的实现思路,尽管跟算法关系不大,但是,在实际的软件开发中,它确实可以非常巧妙地提高程序的运行效率,是一种非常好用的性能优化手段。
特别是,当要处理的数据规模达到一定程度之后,我们无法通过继续优化算法,来提高执行效率的时候,我们就需要在实现的思路上做文章,利用更多的硬件资源,来加快执行的效率。所以,在很多超大规模数据处理中,并行处理的思想,应用非常广泛,比如 MapReduce 实际上就是一种并行计算框架。
课后思考
问:假设我们有 n 个任务,为了提高执行的效率,我们希望能并行执行任务,但是各个任务之间又有一定的依赖关系,如何根据依赖关系找出可以并行执行的任务?
答:思考题用一个有向图来存储任务之间的依赖关系,然后用拓扑排序的思想来执行任务,每次都找到入度为0的,放在队列里,启动线程池开始执行,队列里的任务并行执行完毕,再次调用拓扑排序找到入度为0的人,放入队列,直到所以任务跑完
问:并行与分治的区别是什么?
答:并行是一种工程思路。分治是一种算法思想。