https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1065
基准时间限制:1 秒 空间限制:131072 KB 分值: 20
难度:3级算法题
N个整数组成的序列a[1],a[2],a[3],…,a[n],从中选出一个子序列(a[i],a[i+1],…a[j]),使这个子序列的和>0,并且这个和是所有和>0的子序列中最小的。
例如:4,-1,5,-2,-1,2,6,-2。-1,5,-2,-1,序列和为1,是最小的。
Input
第1行:整数序列的长度N(2 <= N <= 50000) 第2 - N+1行:N个整数
Output
输出最小正子段和。
Input示例
8 4 -1 5 -2 -1 2 6 -2
Output示例
1
思路:先将前n项和求出来,然后排个序,这样使得相邻两项的差最小,要再符合是正的就行,必须是后面的前i项和减去前面j项和,要保证i>j的;然后符合条件的,更新一下ans即可。
代码:
#include <stdio.h>
#include<cstring>
#include<algorithm>
#define N 50010
#define LL long long
using namespace std;
struct node
{
LL sum;
int x;
} s[N];
int cmp(node a,node b)
{
if(a.sum==b.sum)
return a.x<b.x;
return a.sum<b.sum;
}
int main()
{
int n;
LL a;
scanf("%d",&n);
s[0].sum=0;
s[0].x=0;
for(int i=1; i<=n; i++)
{
scanf("%lld",&a);
s[i].sum=s[i-1].sum+a;
s[i].x=i;
}
sort(s,s+n+1,cmp);
LL ans=1e18;
for(int i=0; i<n; i++)
{
LL b=s[i+1].sum-s[i].sum;
if(b>0&&s[i+1].x>s[i].x)
ans=min(b,ans);
}
printf("%lld\n",ans);
}