51nod 1065 最小正子段和

https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1065


基准时间限制:1 秒 空间限制:131072 KB 分值: 20  难度:3级算法题
 收藏
 关注
N个整数组成的序列a[1],a[2],a[3],…,a[n],从中选出一个子序列(a[i],a[i+1],…a[j]),使这个子序列的和>0,并且这个和是所有和>0的子序列中最小的。
例如:4,-1,5,-2,-1,2,6,-2。-1,5,-2,-1,序列和为1,是最小的。
Input
第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N+1行:N个整数
Output
输出最小正子段和。
Input示例
8
4
-1
5
-2
-1
2
6
-2
Output示例
1
题意:求最小的正子段和。

思路:先将前n项和求出来,然后排个序,这样使得相邻两项的差最小,要再符合是正的就行,必须是后面的前i项和减去前面j项和,要保证i>j的;然后符合条件的,更新一下ans即可。

代码:

#include <stdio.h>
#include<cstring>
#include<algorithm>
#define N 50010
#define LL long long
using namespace std;
struct node
{
    LL sum;
    int x;
} s[N];
int cmp(node a,node b)
{
    if(a.sum==b.sum)
        return a.x<b.x;
    return a.sum<b.sum;
}
int main()
{
    int n;
    LL a;
    scanf("%d",&n);
    s[0].sum=0;
    s[0].x=0;
    for(int i=1; i<=n; i++)
    {
        scanf("%lld",&a);
        s[i].sum=s[i-1].sum+a;
        s[i].x=i;
    }
    sort(s,s+n+1,cmp);
    LL ans=1e18;
    for(int i=0; i<n; i++)
    {
        LL b=s[i+1].sum-s[i].sum;
        if(b>0&&s[i+1].x>s[i].x)
            ans=min(b,ans);
    }
    printf("%lld\n",ans);
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值