LightOJ - 1067 Combinations 大组合数取模(费马小定理与逆元)

题意:

求组合数 C(n,m)

思路:

我们知道 C(n,m) = (n!) / (m! * (n-m)!)

但是这里的 n m 都很大,而且需要对 mod 取模,所以需要用到 逆元处理分数取模问题

求逆元可以用扩展欧几里得算法或者费马小定理(快速幂)算法;

这里是用到的是 有费马小定理推出来 运用快速幂:

费马小定理: a ^ (m - 1)  % ( m )  恒等于 1 

可以推出:(a) * (a ^(m-2)) % m = 1;  并且有: (a)*(1/a) % m = 1;

所以   (1/a)% m  =  ( a ^ ( m-2 ) ) % m; 

也就是说  a ^ ( m - 2) 是 a 对于m取模的 逆元;

 ac代码如下:


#include<iostream>
#include<algorithm>
#include<cstdio>

using namespace std;
typedef long long ll;
const int maxn = 1e6 + 7, maxd = 1e6 + 7;
const ll mod = 1000003;

int n, m;
ll f[maxn];

void init() {
    f[0] = 1;
    for(int i = 1; i <= mod; ++i) {
        f[i] = (f[i-1] * i) % mod;
    }
}

ll pow(ll a, ll b) {
    ll res = 1;
    while(b) {
        if(b & 1) res = (res * a) % mod;
        a = (a * a) % mod;
        b /= 2;
    }
    return res;
}

ll lucas() {
    ll res = 1;
    int a = n%mod, b = m%mod;
    res = ( res * f[a] * pow(f[b] * f[a-b] % mod, mod-2) ) % mod;
    return res;
}

int main() {
    init();
    int T;
    scanf("%d", &T);
    for(int tt = 1; tt <= T; ++tt) {
        scanf("%d %d", &n, &m);
        ll ans = lucas();
        printf("Case %d: %d\n", tt, ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值