题意:
给定n个点,选一些点放置拳击机器,两个机器之间距离大于1.3,也就是两个机器不能同行挨着,同列挨着;
问能防止的机器数最大多少
思路:
题目可以转化成最大独立集,因为在坐标系里,不存在基环,那么就可以用匈牙利算法解决二分图最大匹配解决
关于建图,把相邻的两个点(冲突的两个点)建边,然后跑二分图最大匹配数为ans,最后答案就是n-ans;
注意,这里建的双向匹配边,所以ans就是最大匹配数,,在进行匹配的时候匹配过的点可以continue;
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2000 + 7;
int n;
struct node {
int x, y;
}a[maxn];
vector<int> s[maxn];
bool ok(int i, int j) {
if((a[i].x == a[j].x && abs(a[i].y-a[j].y) == 1) || (a[i].y == a[j].y && abs(a[i].x-a[j].x) == 1)) return 1;
else return 0;
}
int f[maxn];
bool vis[maxn];
bool sele(int id) {
for(auto i : s[id]) {
if(!vis[i]) {
vis[i] = 1;
if(f[i] == 0 || sele(f[i])) {
f[i] = id;
f[id] = i;
return true;
}
}
}
return false;
}
int solve() {
memset(f, 0, sizeof f);
int ans = 0;
for(int i = 1; i <= n; ++i) {
if(f[i]) continue;
memset(vis, 0, sizeof vis);
if(sele(i)) ans++;
}
return (n-ans);
}
int main() {
while(~scanf("%d", &n) && n) {
for(int i = 1; i <= n; ++i) {
scanf("%d%d", &a[i].x, &a[i].y);
s[i].clear();
}
for(int i = 1; i <= n; ++i) {
for(int j = i+1; j <= n; ++j) {
if(ok(i,j)) {
s[i].push_back(j);
s[j].push_back(i);
}
}
}
printf("%d\n", solve());
}
return 0;
}