PAT 甲级 1151 LCA in a Binary Tree (30 分) 先序中序遍历求LCA

该博客介绍了如何利用先序和中序遍历解决二叉树中最近公共祖先(LCA)的问题。博主赞赏了柳姐姐的聪明解法,并指出初始的暴力查找方法在复杂度上存在问题,提出了通过建树优化解决方案。
摘要由CSDN通过智能技术生成

题意:

给定一棵二叉树,求两个点的LCA(最近公共祖先)

 

思路:

大赞柳姐姐的博文,一眼就看到了这种求LCA的方法! 聪明 机智 温柔 活泼 可爱 伶俐 宇宙超级无敌萌萌哒 天才少女小柳柳~~~ 爱了爱了

这个方法就是根据先序遍历中序遍历建树的过程,如果两个结点在当前树的根节点的两测,那他们的LCA就是当前结点; 如果当前树的根节点就是两个结点中的一个,那当前结点就是另一个的祖先

 

首先我的思路是建树,然后每次暴力查找LCA;  复杂度  n*m*常数,,,我这常数有点大,有一个样例过不了

建树方法是把每个key映射成一个id,用node结构体存树的结点,这也是PAT中比较好用的建树方法了。

 

#include<bits/stdc++.h>
#include<cstring>
#define FI first
#define SE second

using namespace std;
typedef long long ll;
typedef pair<int, int> P;
const int maxn = 1e4 + 7;
const int maxd = 2e4 + 77;
const int INF = 0x7f7f7f7f;

int m, n;
int in[maxn], pre[maxn];
struct node {
    int va;
    int pre, next;
}a[maxd];
int id = 1;
map<int, int> idx;

int work(int l1, int r1, int l2, int r2, int u, int v, int id1, int id2) {
    if(l1 > r1 || l2 > r2) return -1;
    int t = pre[l1];
    if(t == u || t == v) {
        return t;
    }
    int x = idx[t];
    if((id1-x)*(id2-x) < 0) return in[x];
    int len1 = x - l2;
    if(id1 < x) return work(l1+1, l1+len1, l2, l2+len1-1, u, v, id1, id2);
    else return work(l1+len1+1, r1, l2+len1+1, r2, u, v, id1, id2);
}

void solve(int u, int v) {
    int t1 = idx[u], t2 = idx[v];
    if(!t1 && !t2) {
        printf("ERROR: %d and %d are not found.\n", u, v);
    }
    else if(!t1) {
        printf("ERROR: %d is not found.\n", u);
    }
    else if(!t2) {
        printf("ERROR: %d is not found.\n", v);
    }
    else {
        int lca = work(1, n, 1, n, u, v, idx[u], idx[v]);
        if(lca == u) {
            printf("%d is an ancestor of %d.\n", u, v);
        }
        else if(lca == v) {
            printf("%d is an ancestor of %d.\n", v, u);
        }
        else {
            printf("LCA of %d and %d is %d.\n", u, v, lca);
        }
    }
}
int main() {
    scanf("%d%d", &m, &n);
    for(int i = 1; i <= n; ++i) {
        scanf("%d", &in[i]);
        idx[in[i]] = i;
    }
    for(int i = 1; i <= n; ++i) {
        scanf("%d", &pre[i]);
    }
    for(int i = 1; i <= m; ++i) {
        int u, v; scanf("%d%d", &u, &v);
        solve(u, v);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值