题意:
给定一棵二叉树,求两个点的LCA(最近公共祖先)
思路:
大赞柳姐姐的博文,一眼就看到了这种求LCA的方法! 聪明 机智 温柔 活泼 可爱 伶俐 宇宙超级无敌萌萌哒 天才少女小柳柳~~~ 爱了爱了
这个方法就是根据先序遍历中序遍历建树的过程,如果两个结点在当前树的根节点的两测,那他们的LCA就是当前结点; 如果当前树的根节点就是两个结点中的一个,那当前结点就是另一个的祖先
首先我的思路是建树,然后每次暴力查找LCA; 复杂度 n*m*常数,,,我这常数有点大,有一个样例过不了
建树方法是把每个key映射成一个id,用node结构体存树的结点,这也是PAT中比较好用的建树方法了。
#include<bits/stdc++.h>
#include<cstring>
#define FI first
#define SE second
using namespace std;
typedef long long ll;
typedef pair<int, int> P;
const int maxn = 1e4 + 7;
const int maxd = 2e4 + 77;
const int INF = 0x7f7f7f7f;
int m, n;
int in[maxn], pre[maxn];
struct node {
int va;
int pre, next;
}a[maxd];
int id = 1;
map<int, int> idx;
int work(int l1, int r1, int l2, int r2, int u, int v, int id1, int id2) {
if(l1 > r1 || l2 > r2) return -1;
int t = pre[l1];
if(t == u || t == v) {
return t;
}
int x = idx[t];
if((id1-x)*(id2-x) < 0) return in[x];
int len1 = x - l2;
if(id1 < x) return work(l1+1, l1+len1, l2, l2+len1-1, u, v, id1, id2);
else return work(l1+len1+1, r1, l2+len1+1, r2, u, v, id1, id2);
}
void solve(int u, int v) {
int t1 = idx[u], t2 = idx[v];
if(!t1 && !t2) {
printf("ERROR: %d and %d are not found.\n", u, v);
}
else if(!t1) {
printf("ERROR: %d is not found.\n", u);
}
else if(!t2) {
printf("ERROR: %d is not found.\n", v);
}
else {
int lca = work(1, n, 1, n, u, v, idx[u], idx[v]);
if(lca == u) {
printf("%d is an ancestor of %d.\n", u, v);
}
else if(lca == v) {
printf("%d is an ancestor of %d.\n", v, u);
}
else {
printf("LCA of %d and %d is %d.\n", u, v, lca);
}
}
}
int main() {
scanf("%d%d", &m, &n);
for(int i = 1; i <= n; ++i) {
scanf("%d", &in[i]);
idx[in[i]] = i;
}
for(int i = 1; i <= n; ++i) {
scanf("%d", &pre[i]);
}
for(int i = 1; i <= m; ++i) {
int u, v; scanf("%d%d", &u, &v);
solve(u, v);
}
return 0;
}