第13章 非参数检验【2】:二项检验

参考:SPSS实战与统计思维 - 武松编著 - 微信读书

 声明:以下部分内容含AI生成

核心内容总结

详细介绍了在SPSS软件中如何使用二项检验 来验证一个二分类变量 的实际观测比例是否符合某个特定的理论比例(例如0.5)。


分点解释

  1. 二项检验的目的

    • 用于判断一个只有两个类别(如男/女、是/否、成功/失败)的计数资料,其分布是否符合我们预先设定的理论二项分布。

    • 最典型的应用场景就是检验比例是否为50%(即0.5),但也可以检验其他任意比例(如0.2, 0.75等)。

  2. 操作步骤(以检验性别比例是否为0.5为例)

    • 步骤一: 打开数据文件 (data01.sav)。

    • 步骤二: 依次点击菜单栏的 分析 -> 非参数检验 -> 旧对话框 -> 二项式

    • 步骤三: 在弹出的窗口中,将“性别”变量移入“检验变量列表”。

    • 步骤四: 在“检验比例”框中输入想要检验的理论值 0.50

    • 步骤五: 点击“确定”运行分析。

  3. 一个重要技巧(针对连续数据)

    • 如果需要检验的不是天生的分类变量(如性别),而是连续变量(如身高),可以通过设置“分割点”将其强制分为两类。

    • 示例 将“分割点”设置为165cm,SPSS会自动将身高数据分为“≤165cm”和“>165cm”两组,然后检验这两组的比例是否符合你设定的理论比例。

  4. 结果解读

    • 关键看显著性(Sig.)值(即p值)。

    • 示例中的结果: P = 0.414

    • 解读准则

      • P > 0.05: 结果无统计学意义。这意味着实际观测到的比例与理论比例(0.5)之间的差异“大同小异”,可以认为是由于随机抽样误差造成的,因此没有足够证据拒绝原假设,即认为数据符合该理论二项分布。在您的例子中,就认为性别比例符合0.5。

      • P ≤ 0.05: 结果有统计学意义。这意味着实际比例与理论比例之间存在显著差异,可以认为数据不符合你设定的理论分布。

  5. 适用条件与限制

    • 核心限制: 仅适用于二分类变量。如果你尝试放入一个多分类变量(如“血型”,分为A、B、O、AB型),SPSS会无法计算并弹出警告。

    • 这是该方法的根本局限性。

  6. 方法对比(与第13.1节的卡方拟合优度检验比较)

    • 二项检验: 专用二分类变量的比例检验。在这种情况下,它与卡方检验的结果基本一致。

    • 卡方拟合优度检验: 通用性更强,可用于任何类型的计数资料,包括二分类、多分类(如血型)和等级资料。

    • 结论: 当面对二分类变量时,两种方法均可使用;但当变量类别超过两个时,必须使用卡方拟合优度检验。

一句话总结

二项检验是SP中专用于检验二分类变量比例是否符合某个特定理论值(如50%)的简单假设检验方法,其核心在于解读p值以判断差异是否显著。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羚风雯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值