二项分布的参数p的检验

        设某事件发生的概率为p,做m次的独立检验,以X为发生的次数,则X服从二项分布B(m, p),则针对X可以做出假设

H_0 : p\leq p_0

H_1:p > p_0

        定义一个合理的检验,,设置一个阈值C:

                F : 当 X < C时,接受H0,否则拒绝H0

        其中,则设置犯第一类错误的概率为

\alpha(p) = P(X>C | p \leq p_0) = \sum_{i = C+1}^m\binom{m}{i}p^i(1-p)^{m-i}

       因此,现在设置一个显著性水平\alpha,使得其犯错误的概率在一定的小范围内:

\alpha(p) < \alpha

 那么现在,就转化为使得max(\alpha(p))<\alpha。从直观上面来说,“p值越小,X取到较小值的概率就越大”,则说明P(X \leq C)是关于p的减函数,也就是说P(X > C) = 1 - P(X \leq C),是随p的增函数。因此,当p = p0时,可以达到最大:

max(\alpha(p)) = \alpha(p_0) = \sum_{i = C+1}^m\binom{m}{i}p_0^i(1-p_0)^{m-i}.

         但是,不一定每次都可以取到一个使方程成立的整数C,较常见的是存在一个\bar{C}使得:

\sum_{i = \bar{C}+1}^m\binom{m}{i}p_0^i(1-p_0)^{m-i} < \alpha

\sum_{i = \bar{C}}^m\binom{m}{i}p_0^i(1-p_0)^{m-i} > \alpha

此时,一般选取的是\bar{C}+1,因为这样是降低了检验水平,增加量拒绝域,降低了第一类错误的概率。因此,最终可以转化为方程,其实就是为了求解:

\bar{C} = min C \quad s.t. \sum_{i = C+1}^m\binom{m}{i}p_0^i(1-p_0)^{m-i} < \alpha

可以这样理解这一个公式,现在需要找到一个C。跳出这个公式,这个C就是我进行假设检验的阈值,如果超过了这个阈值,我就认为,在显著性水平为\alpha的情况下,拒绝原假设。回归公式,要是的右边的公式\sum_{i = C+1}^m\binom{m}{i}p_0^i(1-p_0)^{m-i} < \alpha成立,现在p_0是已知的,则需要在满足条件的下C的最小值。结合二项分布的图像,

因此,C的取值范围其实就是[C^*,+\infty], C其实可以是慢慢的向右。因此,最终可以求出这个阈值,再对采用中的样本的\sum_{i = 0}^{m}x_i是否大于C^*,若大于,则拒绝原假设,认为原假设是错误的。

        以上就是二项检验的全部内容,整个过程还是比较清楚的。

        下面开始胡说八道,有点自己的想法,但是不知道怎么表达:主要是针对进行假设检验中最后一步的计算。

        在定义显著性性水平和构造一个检验统计量之后,需要判断所采的样本是否满足阈值的条件。根据限制条件,找到检验统计量的阈值,再计算采集样本中的检验统计量的值,再对检验统计量进行判断。

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值