核函数

核函数

  • 非线性带来高维转换(从模型角度)
  • 对偶表示带来内积(从优化角度)
    对于一个非线性可分的问题=>转成线性可分的问题
    对于原始的空间 x = ( x 1 , x 2 ) x=(x_1,x_2) x=(x1,x2)二维=> Φ ( x ) \Phi(x) Φ(x)=> Z = ( x 1 , x 2 , ( x 1 − x 2 ) 2 Z=(x_1,x_2,(x_1-x_2)^{2} Z=(x1,x2,(x1x2)2) 三维
    高维空间比低维空间更易线性可分

二、核函数Kernel Function

k ( x , x ′ ) = Φ ( x ) T Φ ( x ′ ) = < Φ ( x ) T , Φ ( x ′ ) > k(x,x')=\Phi(x)^T\Phi(x')=<\Phi(x)^T,\Phi(x')> k(x,x)=Φ(x)TΦ(x)=<Φ(x)T,Φ(x)>
k ( x , x ′ ) k(x,x') k(x,x)是一个核函数,核函数避免求复杂的 < Φ ( x ) T , Φ ( x ′ ) > <\Phi(x)^T,\Phi(x')> <Φ(x)T,Φ(x)>
通常不加说明的话, k ( x , x ′ ) k(x,x') k(x,x)指的是正定核函数

2.1正定核函数
  • 在核函数的基础上,如果 k ( x , x ′ ) = Φ ( x ) T Φ ( x ′ ) = < Φ ( x ) T , Φ ( x ′ ) > k(x,x')=\Phi(x)^T\Phi(x')=<\Phi(x)^T,\Phi(x')> k(x,x)=Φ(x)TΦ(x)=<Φ(x)T,Φ(x)>
    则称 k ( x , x ′ ) k(x,x') k(x,x)为正定核函数
  • k ( x , x ′ ) k(x,x') k(x,x)满足(1)对称性(2)正定性 则称 k ( x , z ) k(x,z) k(x,z)为正定核函数
    • 对称性 k ( x , z ) k(x,z) k(x,z)= k ( z , x ) k(z,x) k(z,x)
    • 正定性 任取N个元素, x 1 , x 2 , . . . , x n ∈ X x_1,x_2,...,x_n\in X x1,x2,...,xnX,对应的Gram matrix是半正定的[K=[K( x i , x j x_i,x_j xi,xj)]]

证明: k ( x , z ) = < Φ ( x ) , Φ ( z ) >    ⟺    k(x,z)=<\Phi(x),\Phi(z)> \iff k(x,z)=<Φ(x),Φ(z)> Gram matrix半正定

  • Hilbert space :完备的,可能是无限维的,被赋予内积的线性空间(向量空间=>加法和数乘);【内积是 < a , b > = ∣ a ∣ ∣ b ∣ c o s θ <a,b>=|a||b|cos\theta <a,b>=abcosθ;内积性质:正定性 < f , f > ≥ 0 , " = " 成 立 的 时 候 f = 0 <f,f>\geq 0,"="成立的时候f=0 <f,f>0,"="f=0,对称性,线性】

证明对称性
k ( x , z ) = < Φ ( x ) , Φ ( z ) > k(x,z)=<\Phi(x),\Phi(z)> k(x,z)=<Φ(x),Φ(z)>
k ( z , x ) = < Φ ( z ) , Φ ( x ) > k(z,x)=<\Phi(z),\Phi(x)> k(z,x)=<Φ(z),Φ(x)>
又因为内积拥有对称性质,即 < Φ ( z ) , Φ ( x ) > <\Phi(z),\Phi(x)> <Φ(z),Φ(x)>= < Φ ( x ) , Φ ( z ) > <\Phi(x),\Phi(z)> <Φ(x),Φ(z)>
∴ k ( x , z ) = k ( z , x ) \therefore k(x,z)=k(z,x) k(x,z)=k(z,x) 满足对称性质
证明半正定在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值