leetcode.1738. 找出第 K 大的异或坐标值---利用dp得到二维前缀异或

1738. 找出第 K 大的异或坐标值

给你一个二维矩阵 matrix 和一个整数 k ,矩阵大小为 m x n 由非负整数组成。

矩阵中坐标 (a, b) 的 值 可由对所有满足 0 <= i <= a < m 且 0 <= j <= b < n 的元素 matrix[i][j](下标从 0 开始计数)执行异或运算得到。

请你找出 matrix 的所有坐标中第 k 大的值(k 的值从 1 开始计数)。

示例 1:

输入:matrix = [[5,2],[1,6]], k = 1
输出:7
解释:坐标 (0,1) 的值是 5 XOR 2 = 7 ,为最大的值。
示例 2:

输入:matrix = [[5,2],[1,6]], k = 2
输出:5
解释:坐标 (0,0) 的值是 5 = 5 ,为第 2 大的值。
示例 3:

输入:matrix = [[5,2],[1,6]], k = 3
输出:4
解释:坐标 (1,0) 的值是 5 XOR 1 = 4 ,为第 3 大的值。
示例 4:

输入:matrix = [[5,2],[1,6]], k = 4
输出:0
解释:坐标 (1,1) 的值是 5 XOR 2 XOR 1 XOR 6 = 0 ,为第 4 大的值。
 

提示:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 1000
0 <= matrix[i][j] <= 106
1 <= k <= m * n

题解:

我们使用二维前缀异或+排序即可解题。
怎么求二维前缀异或呢?
一维前缀异或是很简单的,使用一层for加上一些dp的思想即可得到,对于二维,不过是在维度上对一维进行了扩展,本质上还是一维的思想。
即我们设hash[i][j]为从原点到坐标为(i-1,j-1)的数的总异或,那么我们利用dp思想可以得到:
hash[i][j] = hash[i-1][j-1] ^ hash[i-1][j] ^ hash[i][j-1] ^ matrix[i-1][j-1];

其思路为:
在这里插入图片描述
hash[i-1][j-1]为从原点到坐标(i-2,j-2)的总异或,其对于hash[i][j]还差matrix[i-1][j-1]对应的左边及上边的数,而我们使用 hash[i-1][j] ^ hash[i][j-1] 可以发现,他们包括了我们想要的“左边及上边的数”,并且由于他们其实也都包括了hash[i-1][j-1],所以由于位运算的性质,两个都有异或后为0,所以可以起到剔除相同的元素作用,因此dp方程可以得到。

代码(c语言):

int cmp(int*_x,int*_y){
    return *_x>*_y;
}
int kthLargestValue(int** matrix, int matrixSize, int* matrixColSize, int k){
    int m = matrixSize;
    int n = *matrixColSize;
    int hash[m+1][n+1];
    memset(hash,0,sizeof(hash));
    int res[m*n];
    int top = 0;

    for(int i=1;i<=m;i++){
        for(int j=1;j<=n;j++){
            hash[i][j] = hash[i-1][j-1] ^ hash[i-1][j] ^ hash[i][j-1] ^ matrix[i-1][j-1];
            res[top++] = hash[i][j];
        }
    }

    qsort(res,top,sizeof(int),cmp);
    return res[m*n-k];
}

代码(Java):

class Solution {
    public int kthLargestValue(int[][] matrix, int k) {
        int m = matrix.length;
        int n = matrix[0].length;
        int[][] hash = new int[m+1][n+1];
        int[] res = new int[m*n];
        int top = 0;

        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++){
                hash[i][j] = hash[i-1][j-1] ^ hash[i-1][j] ^ hash[i][j-1] ^ matrix[i-1][j-1];
                res[top++] = hash[i][j];
            }
        }

        Arrays.sort(res);
        return res[m*n-k];
    }
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向光.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值