1738. 找出第 K 大的异或坐标值
给你一个二维矩阵 matrix 和一个整数 k ,矩阵大小为 m x n 由非负整数组成。
矩阵中坐标 (a, b) 的 值 可由对所有满足 0 <= i <= a < m 且 0 <= j <= b < n 的元素 matrix[i][j](下标从 0 开始计数)执行异或运算得到。
请你找出 matrix 的所有坐标中第 k 大的值(k 的值从 1 开始计数)。
示例 1:
输入:matrix = [[5,2],[1,6]], k = 1
输出:7
解释:坐标 (0,1) 的值是 5 XOR 2 = 7 ,为最大的值。
示例 2:
输入:matrix = [[5,2],[1,6]], k = 2
输出:5
解释:坐标 (0,0) 的值是 5 = 5 ,为第 2 大的值。
示例 3:
输入:matrix = [[5,2],[1,6]], k = 3
输出:4
解释:坐标 (1,0) 的值是 5 XOR 1 = 4 ,为第 3 大的值。
示例 4:
输入:matrix = [[5,2],[1,6]], k = 4
输出:0
解释:坐标 (1,1) 的值是 5 XOR 2 XOR 1 XOR 6 = 0 ,为第 4 大的值。
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 1000
0 <= matrix[i][j] <= 106
1 <= k <= m * n
题解:
我们使用二维前缀异或+排序即可解题。
怎么求二维前缀异或呢?
一维前缀异或是很简单的,使用一层for加上一些dp的思想即可得到,对于二维,不过是在维度上对一维进行了扩展,本质上还是一维的思想。
即我们设hash[i][j]为从原点到坐标为(i-1,j-1)的数的总异或,那么我们利用dp思想可以得到:
hash[i][j] = hash[i-1][j-1] ^ hash[i-1][j] ^ hash[i][j-1] ^ matrix[i-1][j-1];
其思路为:
hash[i-1][j-1]为从原点到坐标(i-2,j-2)的总异或,其对于hash[i][j]还差matrix[i-1][j-1]对应的左边及上边的数,而我们使用 hash[i-1][j] ^ hash[i][j-1] 可以发现,他们包括了我们想要的“左边及上边的数”,并且由于他们其实也都包括了hash[i-1][j-1],所以由于位运算的性质,两个都有异或后为0,所以可以起到剔除相同的元素作用,因此dp方程可以得到。
代码(c语言):
int cmp(int*_x,int*_y){
return *_x>*_y;
}
int kthLargestValue(int** matrix, int matrixSize, int* matrixColSize, int k){
int m = matrixSize;
int n = *matrixColSize;
int hash[m+1][n+1];
memset(hash,0,sizeof(hash));
int res[m*n];
int top = 0;
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
hash[i][j] = hash[i-1][j-1] ^ hash[i-1][j] ^ hash[i][j-1] ^ matrix[i-1][j-1];
res[top++] = hash[i][j];
}
}
qsort(res,top,sizeof(int),cmp);
return res[m*n-k];
}
代码(Java):
class Solution {
public int kthLargestValue(int[][] matrix, int k) {
int m = matrix.length;
int n = matrix[0].length;
int[][] hash = new int[m+1][n+1];
int[] res = new int[m*n];
int top = 0;
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
hash[i][j] = hash[i-1][j-1] ^ hash[i-1][j] ^ hash[i][j-1] ^ matrix[i-1][j-1];
res[top++] = hash[i][j];
}
}
Arrays.sort(res);
return res[m*n-k];
}
}