5. Longest Palindromic Substring(求最长回文子字符串)

Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.

Example:

Input: "babad"

Output: "bab"

Note: "aba" is also a valid answer.

Example:

Input: "cbbd"

Output: "bb"

题目大意:给定一个字符串,找到最长的回文子串。

解法一:

解题思路:回文字符串有两种情况:长度为奇数,或者长度为偶数。现在分别以这两种情况进行解题,两个int类型的指针left和right,分别向两侧延伸,以找到长度最大的回文子字符串。

解题代码:(44ms,beats 44.34%)

class Solution {
    public String longestPalindrome(String s) {
        if (s.length() <= 1) {
			return s;
		}
		int left, right;
		String res = s.substring(0, 1);
		for (int i = 0; i < s.length(); i++) {
			left = right = i;
			while (left > -1 && right < s.length() && s.charAt(left) == s.charAt(right)) {
				left--;
				right++;
			}
			if (right - left - 1 > res.length()) {
				res = s.substring(left + 1, right);
			}
		}

		for (int i = 0; i < s.length() - 1; i++) {
			left = i;
			right = i + 1;
			while (left > -1 && right < s.length() && s.charAt(left) == s.charAt(right)) {
				left--;
				right++;
			}
			if (right - left - 1 > res.length()) {
				res = s.substring(left + 1, right);
			}
		}

		return res;
    }
}


解法二:

解题思路:动态规划

解题代码:(180ms,beats 1.67%)

class Solution {
    public String longestPalindrome(String s) {
        int sLen = s.length();
		if (sLen <= 1) {
			return s;
		}
		boolean[][] isPalindrome = new boolean[sLen][sLen];
		// 初始化,i=j时只有一个字符,是回文字符串。i>j时是空串,也视为回文字符串。i<j时先默认初始化为false。
		for (int i = 0; i < sLen; i++) {
			for (int j = 0; j < sLen; j++) {
				if (i < j) {
					isPalindrome[i][j] = false;
				} else {
					isPalindrome[i][j] = true;
				}
			}
		}
		int left = 0, right = 0;
		for (int step = 1; step < sLen; step++) {
			for (int i = 0; i + step < sLen; i++) {
				int j = i + step;
				if (s.charAt(i) != s.charAt(j)) {
					isPalindrome[i][j] = false;
				} else {
					isPalindrome[i][j] = isPalindrome[i + 1][j - 1];
					if (isPalindrome[i][j] == true) {
						if (j - i > right - left) {
							left = i;
							right = j;
						}
					}
				}

			}
		}
		return s.substring(left, right + 1);
    }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值