5. Longest Palindromic Substring(求最长回文子字符串)

Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.

Example:

Input: "babad"

Output: "bab"

Note: "aba" is also a valid answer.

Example:

Input: "cbbd"

Output: "bb"

题目大意:给定一个字符串,找到最长的回文子串。

解法一:

解题思路:回文字符串有两种情况:长度为奇数,或者长度为偶数。现在分别以这两种情况进行解题,两个int类型的指针left和right,分别向两侧延伸,以找到长度最大的回文子字符串。

解题代码:(44ms,beats 44.34%)

class Solution {
    public String longestPalindrome(String s) {
        if (s.length() <= 1) {
			return s;
		}
		int left, right;
		String res = s.substring(0, 1);
		for (int i = 0; i < s.length(); i++) {
			left = right = i;
			while (left > -1 && right < s.length() && s.charAt(left) == s.charAt(right)) {
				left--;
				right++;
			}
			if (right - left - 1 > res.length()) {
				res = s.substring(left + 1, right);
			}
		}

		for (int i = 0; i < s.length() - 1; i++) {
			left = i;
			right = i + 1;
			while (left > -1 && right < s.length() && s.charAt(left) == s.charAt(right)) {
				left--;
				right++;
			}
			if (right - left - 1 > res.length()) {
				res = s.substring(left + 1, right);
			}
		}

		return res;
    }
}


解法二:

解题思路:动态规划

解题代码:(180ms,beats 1.67%)

class Solution {
    public String longestPalindrome(String s) {
        int sLen = s.length();
		if (sLen <= 1) {
			return s;
		}
		boolean[][] isPalindrome = new boolean[sLen][sLen];
		// 初始化,i=j时只有一个字符,是回文字符串。i>j时是空串,也视为回文字符串。i<j时先默认初始化为false。
		for (int i = 0; i < sLen; i++) {
			for (int j = 0; j < sLen; j++) {
				if (i < j) {
					isPalindrome[i][j] = false;
				} else {
					isPalindrome[i][j] = true;
				}
			}
		}
		int left = 0, right = 0;
		for (int step = 1; step < sLen; step++) {
			for (int i = 0; i + step < sLen; i++) {
				int j = i + step;
				if (s.charAt(i) != s.charAt(j)) {
					isPalindrome[i][j] = false;
				} else {
					isPalindrome[i][j] = isPalindrome[i + 1][j - 1];
					if (isPalindrome[i][j] == true) {
						if (j - i > right - left) {
							left = i;
							right = j;
						}
					}
				}

			}
		}
		return s.substring(left, right + 1);
    }
}




### 使用动态规划方法寻找最长回文子串 为了在C语言中实现寻找最长回文子串的功能,可以采用动态规划的方式。这种方法利用一个二维布尔数组`dp[i][j]`来标记从索引`i`到索引`j`之间的子串是否为回文[^1]。 当处理长度为1的子串时,默认它们都是回文,因此设置`dp[i][i]=true`。对于长度为2的子串,则只有当这两个字符相等时才认为其是回文,即`s[i]==s[j]`的情况下设`dp[i][j]=true`。而针对更长的子串(长度>2),则需同时满足首尾两字符相同以及去掉这两端之后剩下的部分也构成回文的要才能被认定为回文,表达式为`(s[i]==s[j]) && dp[i+1][j-1]`。 下面是一个具体的C语言代码实例: ```c #include <stdio.h> #include <string.h> void findLongestPalindrome(const char *str, int start, int end, int *maxLen, int *begin) { while (start >= 0 && end <= strlen(str)-1 && str[start] == str[end]) { start--; end++; } start++; // Correct the overshoot from last iteration. if (*maxLen < end - start) { *maxLen = end - start; *begin = start; } } char* longestPalindrome(char* s){ if (!s || !(*s)) return ""; int maxLen = 0; int begin = 0; for(int i=0;i<strlen(s);++i){ findLongestPalindrome(s,i,i,&maxLen,&begin); findLongestPalindrome(s,i,i+1,&maxLen,&begin); } char* result=(char *)malloc((maxLen+1)*sizeof(char)); strncpy(result,s+begin,maxLen); result[maxLen]='\0'; return result; } ``` 此函数首先初始化最大长度(`maxLen`)和起始位置(`begin`)为零值。接着遍历整个字符串中的每一个字符作为潜在中心点尝试扩展得到尽可能大的奇数长度或偶数长度回文序列,并更新相应的参数直到完成全部扫描工作为止。最终根据找到的最大长度截取原字符串相应片段形成新的字符串返回给调用者[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值