神经网络模型loss不收敛、不下降问题汇总

本文分析了神经网络模型在训练过程中可能出现的loss不收敛或不下降的问题,包括学习率过大导致的跑飞、样本量不足、过拟合和数据问题。针对这些问题,提出了减小学习率、调整模型复杂度、应用正则化等解决方案,并给出了具体的实例和解决办法。
摘要由CSDN通过智能技术生成

一、模型不收敛

主要有以下几个原因:

1.learning rate设大了会带来跑飞(loss突然一直很大)的问题
这个是新手最常见的情况——为啥网络跑着跑着看着要收敛了结果突然飞了呢?可能性最大的原因是你用了relu作为激活函数的同时使用了softmax或者带有exp的函数做分类层的loss函数。当某一次训练传到最后一层的时候,某一节点激活过度(比如100),那么exp(100)=Inf,发生溢出,bp后所有的weight会变成NAN,然后从此之后weight就会一直保持NAN,于是loss就飞起来辣。我的depth estimation相关项目的loss曲线,如下:

可以看出跑飞了,(幸lr设的并不是非常大所以又拉了回来)。如果lr设的过大会出现跑飞再也回不来的情况。这时候你停一下随便挑一个层的weights看一看,很有可能都是NAN了。对于这种情况建议用二分法尝试。0.1~0.0001.不同模型不同任务最优的lr都不一样。

 

2.数据库太小一般不会带来不收敛的问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiangyong58

喝杯茶还能肝到天亮,共同进步

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值