两数之和

题目描述

给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标。

暴力解法

时间复杂度为O(n2),空间复杂度O(1)。

public int[] twoSum(int[] nums, int target) {
        int[] result = new int[2];
        int N = nums.length;
        for(int i = 0; i<N-1; i++) {
        	for(int j = i+1;j<N; j++) {
        		if(nums[i]+nums[j] == target) {
        			result[0] = i;
        			result[1] = j;
        			return result;
        		}
        	}
        }
        return result;
    }

两遍哈希表

对时间复杂度进行优化,以空间换取速度。时间复杂度O(n),空间复杂度O(n)。

public int[] twoSum(int[] nums, int target) {
       Map map = new HashMap<Integer,Integer>();
        for(int i= 0; i<nums.length; i++) {
        	map.put(nums[i],i);
        }
        
        for(int i = 0; i<nums.length; i++) {
        	int rest = target - nums[i];
        	if(map.containsKey(rest) && (Integer)map.get(rest) != i) {	//两个数不能一样
        		return new int[]{i,(int)map.get(rest)};
        	}
        }
        return null;
    }

一遍哈希表

边遍历边插入,在前几个数据插入哈希表时,一定查不着数据。

public int[] twoSum(int[] nums, int target) {
       Map map = new HashMap<Integer,Integer>();
        
        for(int i = 0; i<nums.length; i++) {
        	int rest = target - nums[i];
        	if(map.containsKey(rest)) {	
        		return new int[]{(int)map.get(rest),i};
        	}else {
        		map.put(nums[i],i);
        	}
        }
        return null;
    }

扩展

如果需要三个数呢???例如判断是否存在三个元素a,b,c,使得a+b+c = 0 ?这个数组中会有重复的数值,所以不能采用上述的哈希表来存储。

排序做法

利用排序之后,采用二分法,二分法是基于排序的。可快速的查找列表。复杂度为O(n2logn)。

public List<List<Integer>> threeSum(int[] nums) {
        List list = new ArrayList<List>();
        //先对数组进行排序
		chooseSort(nums);
		for(int i = 0; i < nums.length-2; i++) {
			for(int j = i+1; j<nums.length-1; j++) {
				int k = binarySearch(nums, -nums[i]-nums[j],j+1, nums.length-1);
				if(k != -1 && k!= i && k!= j) {
					List list2 = new ArrayList<Integer>();
					list2.add(nums[i]);
					list2.add(nums[j]);
					list2.add(nums[k]);
					list.add(list2);
				}
			}
		}
		
		return list;
    }
    
    private void chooseSort(int[] nums) {
		for(int i = 0; i<nums.length; i++) {
			int min = i;	//记录最小值的角标
			for(int j = i+1; j<nums.length; j++) {
				if(min > nums[j]) {
					min = j;
				}
			}
			exch(nums, i, min);
		}
	}
	
	private void exch(int[] nums, int i, int j) {
		int temp = nums[i];
		nums[i] = nums[j];
		nums[j] = temp;
	}
	
	private int binarySearch(int[] nums, int k,int lo,int hi) {
		//其中nums必须是有序的
		if(lo > hi)
			return -1;
		else {
			int mid = lo +(hi-lo)/2;
			if(nums[mid] == k)
				return mid;
			else if(nums[mid] > k) {
				return binarySearch(nums, k, lo, mid-1);
			}else {
				return binarySearch(nums, k, mid+1, hi);
			}
		}
	}

但是上面代码是有问题的,没有考虑重复的问题。这个问题怎么解决呢???想到可以用将访问到的次数利用哈希表可以存储,可是对于重复的问题依然没有解决,反倒增加了空间复杂度。
而且二分法对于有重复的数,就会给出的位置则是其中的一个,而不是精确定位。首先对二分法有重复的数进行优化。对于有重复的数,则在找到目标的第一个匹配的和最后一个匹配的。

private int binaryFirst(int[] nums, int k,int lo,int hi) {
		//其中nums必须是有序的
		if(lo > hi)
			return -1;
		else {
			int mid = lo +(hi-lo)/2;
			if(nums[mid] == k) {
				if((mid > lo && nums[mid-1] != k) || mid == lo)
					return mid;
				else {
					hi = mid - 1;	//前一个数字也等于于当前数据
				}
			}else if(nums[mid] > k) {
				hi = mid - 1;
			}else {
				lo = mid + 1;
			}
			return binaryFirst(nums, k, lo, hi);
		}
	}
	
	private int binaryLast(int[] nums, int k,int lo,int hi) {
		//其中nums必须是有序的
		if(lo > hi)
			return -1;
		else {
			int mid = lo +(hi-lo)/2;
			if(nums[mid] == k) {
				if((mid < hi && nums[mid+1] != k) || mid == hi)
					return mid;
				else {
					lo = mid + 1;	//后一个数字也等于于当前数据
				}
			}else if(nums[mid] > k) {
				hi = mid - 1;
			}else {
				lo = mid + 1;
			}
			return binaryLast(nums, k, lo, hi);
		}
	}

由此得出使用二分查找会比较复杂,则换一种方法。依然先将数据排序,利用双指针解决重复的问题。

public List<List<Integer>> threeSum(int[] nums) {
		List list = new ArrayList<List>();
		//先对数组进行排序
		Arrays.sort(nums);
		for(int i = 0; i<nums.length-2 ;i++) {
			if(i == 0 || (i>0 && nums[i] != nums[i-1])) {//跳过重复的答案,所以是往前判断是否相等
				int l = i+1,r = nums.length - 1,sum = 0-nums[i];
				while(l < r) {
					if(nums[l] + nums[r] == sum) {
						list.add(Arrays.asList(nums[i],nums[l],nums[r]));
						while(l <r && nums[l] == nums[l+1])
							l++;
						while(l <r && nums[r] == nums[r-1])
							r--;
						l++;
						r--;
					}
					else if(nums[l] + nums[r] < sum) {  //对于比sum小的,则应该增加l,不可以减小r,否则就更小了
						while(l <r && nums[l] == nums[l+1]) 
							l++;
                        l++;
					}else{      //对于比sum大,则需要降低r,不可以增大l
						while(l <r && nums[r] == nums[r-1])
							r--;
                        r--;
					}
				}
			}
		}
		return list;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值