一篇文章搞懂人工智能、机器学习和深度学习之间的区别

标签: 人工智能 机器学习 深度学习
13345人阅读 评论(0) 收藏 举报
分类:

概述

2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源。这两年在不管在国内还是在国外,人工智能、机器学习仿佛一夜之前传遍大街小巷。机器学习作为人工智能的一种类型,可以让软件根据大量的数据来对未来的情况进行阐述或预判。如今,领先的科技巨头无不在机器学习下予以极大投入。Facebook、苹果、微软,甚至国内的百度,Google 自然也在其中。

去年早些时候 Google DeepMind 的 AlphaGo 项目在举世瞩目的围棋比赛中一举击败了韩国选手李世石,媒体就是使用了人工智能、机器学习和深度学习这几个术语,来解释 DeepMind 获胜的原因,并将它们混为一谈。但是三者其实不是一回事。

区别与联系

本文借助Michael Copeland的讲解,让我们撩开人工智能、机器学习和深度学习的概念,深入理解它们的关系和区别。为了搞清三者关系,我们来看一张图:
这里写图片描述

如图所示:人工智能最大,此概念也最先问世;然后是机器学习,出现的稍晚;最后才是深度学习。
在之前的文章机器学习的发展历程 一文中,我们详细的介绍了机器学习的发展历史。

从低潮到繁荣

自从 1956 年计算机科学家们在达特茅斯会议(Dartmouth Conferences)上确认人工智能这个术语以来,人们就不乏关于人工智能奇思妙想,研究人员也在不遗余力地研究。在此后的几十年间,人工智能先是被捧为人类文明光明未来的钥匙,后又被当作过于自大的异想天开而抛弃。

但是在过去几年中,人工智能出现了爆炸式的发展,尤其是 2015 年之后。大部分原因,要归功于图形处理器(GPU)的广泛应用,使得并行处理更快、更便宜、更强大。另外,人工智能的发展还得益于几乎无限的存储空间和海量数据的出现(大数据运动):图像、文本、交易数据、地图数据,应有尽有。

下面我们从发展的历程中来一一展开对人工智能、机器学习和深度学习的深度学习。

人工智能

这里写图片描述

人工智能先驱们在达特茅斯开会时,心中的梦想是希望通过当时新兴的计算机,打造拥有相当于人类智能的复杂机器。这就是我们所说的“通用人工智能”(General AI)概念,拥有人类五感(甚至更多)、推理能力以及人类思维方式的神奇机器。在电影中我们已经看过无数这样的机器人,对人类友好的 C-3PO,以及人类的敌人终结者。通用人工智能机器至今只存在 于电影和科幻小说里,理由很简单:我们还实现不了,至少目前为止。

我们力所能及的,算是“弱人工智能”(Narrow AI):执行特定任务的水平与人类相当,甚至超越人类的技术。现实中有很多弱人工智能的例子。这些技术有人类智能的一面。但是它们是如何做到的?智能来自哪里?这就涉及到下一个同心圆:机器学习。

机器学习

这里写图片描述

机器学习是实现人工智能的一种方法。机器学习的概念来自早期的人工智能研究者,已经研究出的算法包括决策树学习、归纳逻辑编程、增强学习和贝叶斯网络等。简单来说,机器学习就是使用算法分析数据,从中学习并做出推断或预测。与传统的使用特定指令集手写软件不同,我们使用大量数据和算法来“训练”机器,由此带来机器学习如何完成任务。

许多年来,计算机视觉一直是机器学习最佳的领用领域之一,尽管还需要大量的手动编码才能完成任务。研究者会手动编写一些分类器(classifier),如边缘检测筛选器,帮助程序辨别物体的边界;图形检测分类器,判断物体是否有八个面;以及识别“S-T-O-P”的分类器。在这些手动编写的分类器的基础上,他们再开发用于理解图像的算法,并学习如何判断是否有停止标志。

但是由于计算机视觉和图像检测技术的滞后,经常容易出错。

深度学习

这里写图片描述

深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播方向也不同。

举个例子,你可以将一张图片切分为小块,然后输入到神经网络的第一层中。在第一层中做初步计算,然后神经元将数据传至第二层。由第二层神经元执行任务,依次类推,直到最后一层,然后输出最终的结果。

每个神经元都会给其输入指定一个权重:相对于执行的任务该神经元的正确和错误程度。最终的输出由这些权重共同决定。因此,我们再来看看上面提到的停止标志示例。一张停止标志图像的属性,被一一细分,然后被神经元“检查”:形状、颜色、字符、标志大小和是否运动。神经网络的任务是判断这是否是一个停止标志。它将给出一个“概率向量”(probability vector),这其实是基于权重做出的猜测结果。在本文的示例中,系统可能会有 86% 的把握认定图像是一个停止标志,7% 的把握认为是一个限速标志,等等。网络架构然后会告知神经网络其判断是否正确。
不过,问题在于即使是最基础的神经网络也要耗费巨大的计算资源,因此当时不算是一个可行的方法。不过,以多伦多大学 Geoffrey Hinton 教授为首的一小批狂热研究者们坚持采用这种方法,最终让超级计算机能够并行执行该算法,并证明该算法的作用。如果我们回到停止标志那个例子,很有可能神经网络受训练的影响,会经常给出错误的答案。这说明还需要不断的训练。它需要成千上万张图片,甚至数百万张图片来训练,直到神经元输入的权重调整到非常精确,几乎每次都能够给出正确答案。不过值得庆幸的是Facebook 利用神经网络记住了你母亲的面孔;吴恩达 2012 年在谷歌实现了可以识别猫的神经网络。

如今,在某些情况下,通过深度学习训练过的机器在图像识别上表现优于人类,这包括找猫、识别血液中的癌症迹象等。谷歌的 AlphaGo 学会了围棋,并为比赛进行了大量的训练:不断的和自己比赛。

总结

人工智能的根本在于智能,而机器学习则是部署支持人工智能的计算方法。简单的将,人工智能是科学,机器学习是让机器变得更加智能的算法,机器学习在某种程度上成就了人工智能。

查看评论

一张图看懂AI、机器学习和深度学习的区别

AI(人工智能)是未来,是科幻小说,是我们日常生活的一部分。所有论断都是正确的,只是要看你所谈到的AI到底是什么。   例如,当谷歌DeepMind开发的AlphaGo程序打败韩国职业围棋高手Lee...
  • dukai392
  • dukai392
  • 2017-04-20 16:54:23
  • 18195

机器学习、深度学习的理论与实战入门建议整理(一)

转载自http://blog.csdn.net/zyj098765/article/details/52860183引言   拿到这份文档时想必你的脑海中一直萦绕着这么一个问题,“机器学习/深度学习要...
  • u011285477
  • u011285477
  • 2016-10-19 17:26:05
  • 5764

相比于深度学习,传统的机器学习算法难道就此没落了吗,还有必要去学习吗?

应 CSDN 运营朋友之邀写了一篇观点文章,作为一个刚刚入门的小硕,虽然不才,但厚着脸皮,发表一下自己浅薄的看法。...
  • u010167269
  • u010167269
  • 2016-09-24 10:53:19
  • 18942

为什么说深度学习和机器学习截然不同?

[转] http://www.leiphone.com/news/201612/ivLxiAXyHTCqGu0K.html 导语:Andreesen说“软件正在占领全世界”,那么深度...
  • xiangz_csdn
  • xiangz_csdn
  • 2017-01-05 08:51:50
  • 13537

一文读懂深度学习与机器学习的差异

作者:oschina 如果你经常想让自己弄清楚机器学习和深度学习的区别,阅读该文章,我将用通俗易懂的语言为你介绍他们之间的差别。机器学习和深度学习变得越来越火。突然之间,不管是了解的还是不了解的...
  • cpless
  • cpless
  • 2017-10-26 13:03:51
  • 454

机器学习——深度学习(Deep Learning)

Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。Key Wor...
  • abcjennifer
  • abcjennifer
  • 2012-08-04 09:49:03
  • 372464

深度学习 VS 传统的机器学习

原文地址:http://blog.csdn.net/u010167269/article/details/52642562 由于和笔者的想法比较相同,特转载,以作记录,也供跟多人讨论 ...
  • yezi_1026
  • yezi_1026
  • 2016-10-08 21:22:22
  • 5224

一篇文章讲清楚人工智能、机器学习和深度学习的区别和联系

人工智能的浪潮正在席卷全球,诸多词汇时刻萦绕在我们耳边:人工智能(Artificial Intelligence)、机器学习(Machine Learning)、深度学习(Deep Learning)...
  • FnqTyr45
  • FnqTyr45
  • 2017-10-24 00:00:00
  • 1358

人工智能、机器学习和深度学习三者怎么区别?

不少朋友常常问,人工智能、机器学习和深度学习三者怎么区别,他们的有什么关系?因此,大圣众包(www.dashengzb.cn)小编为了让大家不再混淆,我们一起来看看专家的详细讲解,一一揭秘!  ...
  • dashenghuahua
  • dashenghuahua
  • 2016-09-20 15:29:16
  • 953

简单理解:人工智能、数据挖掘、模式识别、机器学习、深度学习

出于学习的需要,对人工智能领悟几个很重要的概念(人工智能、数据挖掘、模式识别、机器学习、深度学习)做了简单的总结。不一定很全,只是总结了几者主要的区别。...
  • feichizhongwu888
  • feichizhongwu888
  • 2016-10-03 14:15:50
  • 9601
    本人新作

    新书

    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 241万+
    积分: 3万+
    排名: 192
    博客专栏
    最新评论