思路:
当前房屋偷与不偷取决于前一个房屋和前两个房屋是否被偷了。
所以这里就更感觉到,当前状态和前面状态会有一种依赖关系,那么这种依赖关系都是动规的递推公式。
当然以上是大概思路,打家劫舍是dp解决的经典问题,接下来我们来动规五部曲分析如下:
1.确定dp数组(dp table)以及下标的含义
dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。(到第i个房间为止能偷的最多钱为dp[i])
2.确定递推公式
决定dp[i]的因素就是第i房间偷还是不偷。
如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。
如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点)
然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
3.dp数组如何初始化
从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]
从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);
4.确定遍历顺序
dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!
5.举例推导dp数组
以示例二,输入[2,7,9,3,1]为例。
红框dp[nums.size() - 1]为结果
代码:
class Solution:
def rob(self, nums: List[int]) -> int:
if len(nums) == 1: # 如果只有一个房屋,返回其金额
return nums[0]
dp = [0] * len(nums)
dp[0] = nums[0] # 将dp的第一个元素设置为第一个房屋的金额
dp[1] = max(nums[0], nums[1]) # 将dp的第二个元素设置为第一二个房屋中的金额较大者
# 遍历剩余的房屋
for i in range(2, len(nums)):
# 对于每个房屋,选择抢劫当前房屋和抢劫前一个房屋的最大金额
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])
return dp[len(nums)-1] # 返回最后一个房屋中可抢劫的最大金额
- 时间复杂度: O(n)
- 空间复杂度: O(n)
思路:
这道题目和198.打家劫舍 (opens new window)是差不多的,唯一区别就是成环了。
对于一个数组,成环的话主要有如下三种情况:
- 情况一:考虑不包含首尾元素
- 情况二:考虑包含首元素,不包含尾元素
- 情况三:考虑包含尾元素,不包含首元素
注意我这里用的是"考虑",例如情况三,虽然是考虑包含尾元素,但不一定要选尾部元素! 对于情况三,取nums[1] 和 nums[3]就是最大的。
而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了。
分析到这里,本题其实比较简单了。 剩下的和198.打家劫舍 (opens new window)就是一样的了。
代码:
class Solution:
def rob(self, nums: List[int]) -> int:
if len(nums) == 1: # 如果只有一个房屋,返回其金额
return nums[0]
result1 = self.robRange(nums, 0, len(nums) - 2) # 情况二
result2 = self.robRange(nums, 1, len(nums) - 1) # 情况三
return max(result1,result2)
# 198.打家劫舍的逻辑
def robRange(self, nums: List[int], start: int, end: int) -> int:
if start==end:
return nums[start]
dp = [0] * len(nums)
dp[start] = nums[start] # 将dp的第一个元素设置为第一个房屋的金额
dp[start+1] = max(nums[start], nums[start+1]) # 将dp的第二个元素设置为第一二个房屋中的金额较大者
# 遍历剩余的房屋
for i in range(start+2, end+1):
# 对于每个房屋,选择抢劫当前房屋和抢劫前一个房屋的最大金额
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])
return dp[end] # 返回最后一个房屋中可抢劫的最大金额
- 时间复杂度: O(n)
- 空间复杂度: O(n)
思路:
这道题目和 198.打家劫舍 (opens new window),213.打家劫舍II (opens new window)也是如出一辙,只不过这个换成了树。
如果对树的遍历不够熟悉的话,那本题就有难度了。
对于树的话,首先就要想到遍历方式,前中后序(深度优先搜索)还是层序遍历(广度优先搜索)。
本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算。
与198.打家劫舍,213.打家劫舍II一样,关键是要讨论当前节点抢还是不抢。
如果抢了当前节点,两个孩子就不能动,如果没抢当前节点,就可以考虑抢左右孩子(注意这里说的是“考虑”)
而动态规划其实就是使用状态转移容器来记录状态的变化,这里可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。
这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解。
1.确定递归函数的参数和返回值
这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。
所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。
所以本题dp数组就是一个长度为2的数组!
那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢?
别忘了在递归的过程中,系统栈会保存每一层递归的参数。
如果还不理解的话,就接着往下看,看到代码就理解了哈。
2.确定终止条件
在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回
3.确定遍历顺序
首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。
通过递归左节点,得到左节点偷与不偷的金钱。
通过递归右节点,得到右节点偷与不偷的金钱。
4.确定单层递归的逻辑
如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义)
如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);
最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}
5.举例推导dp数组
以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导)
最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱。
代码:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rob(self, root: Optional[TreeNode]) -> int:
# dp数组(dp table)以及下标的含义:
# 1. 下标为 0 记录 **不偷该节点** 所得到的的最大金钱
# 2. 下标为 1 记录 **偷该节点** 所得到的的最大金钱
dp = self.traversal(root)
return max(dp)
# 要用后序遍历, 因为要通过递归函数的返回值来做下一步计算
def traversal(self, node):
# 递归终止条件,就是遇到了空节点,那肯定是不偷的
if not node:
return (0, 0)
left = self.traversal(node.left)
right = self.traversal(node.right)
# 不偷当前节点, 偷子节点
val_0 = max(left[0], left[1]) + max(right[0], right[1])
# 偷当前节点, 不偷子节点
val_1 = node.val + left[0] + right[0]
return (val_0, val_1)
- 时间复杂度:O(n),每个节点只遍历了一次
- 空间复杂度:O(log n),算上递推系统栈的空间