思路:
本题和动态规划:718. 最长重复子数组 (opens new window)区别在于这里不要求是连续的了,但要有相对顺序,即:"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
继续动规五部曲分析如下:
1.确定dp数组(dp table)以及下标的含义
dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
有同学会问:为什么要定义长度为[0, i - 1]的字符串text1,定义为长度为[0, i]的字符串text1不香么?
这样定义是为了后面代码实现方便,如果非要定义为长度为[0, i]的字符串text1也可以,我在 动态规划:718. 最长重复子数组 (opens new window)中的「拓展」里 详细讲解了区别所在,其实就是简化了dp数组第一行和第一列的初始化逻辑。
2.确定递推公式
主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同
如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
3.dp数组如何初始化
先看看dp[i][0]应该是多少呢?
test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;
同理dp[0][j]也是0。
其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。
4.确定遍历顺序
从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:
那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。
5.举例推导dp数组
以输入:text1 = "abcde", text2 = "ace" 为例,dp状态如图:
最后红框dp[text1.size()][text2.size()]为最终结果
代码:
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
# 创建一个二维数组 dp,用于存储最长公共子序列的长度
dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)]
# 遍历 text1 和 text2,填充 dp 数组
for i in range(1, len(text1) + 1):
for j in range(1, len(text2) + 1):
if text1[i - 1] == text2[j - 1]:
# 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一
dp[i][j] = dp[i - 1][j - 1] + 1
else:
# 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
# 返回最长公共子序列的长度
return dp[len(text1)][len(text2)]
- 时间复杂度: O(n * m),其中 n 和 m 分别为 text1 和 text2 的长度
- 空间复杂度: O(n * m)
拓展(长度为[0, i]的字符串text1与长度为[0, j]的字符串text2的最长公共子序列为dp[i][j])
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
dp=[[0]*len(text2) for _ in range(len(text1))]
# 要对第一列,第一行进行初始化
for i in range(len(text1)):
if text2[0]==text1[i]:
while i <= len(text1)-1:
dp[i][0]=1
i+=1
break
for j in range(len(text2)):
if text1[0]==text2[j]:
while j <= len(text2)-1:
dp[0][j]=1
j+=1
break
for i in range(1,len(text1)):
for j in range(1,len(text2)):
if text1[i]==text2[j]:
dp[i][j]=dp[i-1][j-1]+1
else:
dp[i][j]=max(dp[i-1][j],dp[i][j-1])
return dp[-1][-1]
思路:
本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!
那么本题就和我们刚刚讲过的这道题目动态规划:1143.最长公共子序列 (opens new window)就是一样一样的了。
一样到什么程度呢? 把字符串名字改一下,其他代码都不用改,直接copy过来就行了。
代码:
class Solution:
def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
# 创建一个二维数组 dp,用于存储最长公共子序列的长度
dp = [[0] * (len(nums2) + 1) for _ in range(len(nums1) + 1)]
# 遍历 text1 和 text2,填充 dp 数组
for i in range(1, len(nums1) + 1):
for j in range(1, len(nums2) + 1):
if nums1[i - 1] == nums2[j - 1]:
# 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一
dp[i][j] = dp[i - 1][j - 1] + 1
else:
# 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
# 返回最长公共子序列的长度
return dp[len(nums1)][len(nums2)]
- 时间复杂度: O(n * m)
- 空间复杂度: O(n * m)
思路:
这道题之前我们在讲解贪心专题的时候用贪心算法解决过一次,贪心算法:最大子序和 (opens new window)。
这次我们用动态规划的思路再来分析一次。
动规五部曲如下:
1.确定dp数组(dp table)以及下标的含义
dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]。
2.确定递推公式
dp[i]只有两个方向可以推出来:
- dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
- nums[i],即:从头开始计算当前连续子序列和
一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);
3.dp数组如何初始化
从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。
dp[0]应该是多少呢?
根据dp[i]的定义,很明显dp[0]应为nums[0]即dp[0] = nums[0]。
4.确定遍历顺序
递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。
5.举例推导dp数组
以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下:
注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6]。
代码:
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
dp = [0] * len(nums)
dp[0] = nums[0]
result = dp[0]
for i in range(1, len(nums)):
dp[i] = max(dp[i-1] + nums[i], nums[i]) #状态转移公式
result = max(result, dp[i]) #result 保存dp[i]的最大值
return result
- 时间复杂度:O(n)
- 空间复杂度:O(n)
另一个版本
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
dp=[0]*len(nums)
dp[0]=nums[0]
for i in range(1,len(nums)):
if nums[i]+dp[i-1]>nums[i]:
dp[i]=nums[i]+dp[i-1]
else:
dp[i]=nums[i]
return max(dp)