代码随想录算法训练营第五十三天|1143.最长公共子序列、1035.不相交的线、53. 最大子数组和

1143. 最长公共子序列

思路:

本题和动态规划:718. 最长重复子数组 (opens new window)区别在于这里不要求是连续的了,但要有相对顺序,即:"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

继续动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

有同学会问:为什么要定义长度为[0, i - 1]的字符串text1,定义为长度为[0, i]的字符串text1不香么?

这样定义是为了后面代码实现方便,如果非要定义为长度为[0, i]的字符串text1也可以,我在 动态规划:718. 最长重复子数组 (opens new window)中的「拓展」里 详细讲解了区别所在,其实就是简化了dp数组第一行和第一列的初始化逻辑。

2.确定递推公式

主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

3.dp数组如何初始化

先看看dp[i][0]应该是多少呢?

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。

其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。

4.确定遍历顺序

从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:

1143.最长公共子序列

那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。

5.举例推导dp数组

以输入:text1 = "abcde", text2 = "ace" 为例,dp状态如图:

1143.最长公共子序列1

最后红框dp[text1.size()][text2.size()]为最终结果

代码:

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        # 创建一个二维数组 dp,用于存储最长公共子序列的长度
        dp = [[0] * (len(text2) + 1) for _ in range(len(text1) + 1)]
        
        # 遍历 text1 和 text2,填充 dp 数组
        for i in range(1, len(text1) + 1):
            for j in range(1, len(text2) + 1):
                if text1[i - 1] == text2[j - 1]:
                    # 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    # 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        
        # 返回最长公共子序列的长度
        return dp[len(text1)][len(text2)]
  • 时间复杂度: O(n * m),其中 n 和 m 分别为 text1 和 text2 的长度
  • 空间复杂度: O(n * m)

拓展(长度为[0, i]的字符串text1与长度为[0, j]的字符串text2的最长公共子序列为dp[i][j]) 

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        dp=[[0]*len(text2) for _ in range(len(text1))]
 
        # 要对第一列,第一行进行初始化
        for i in range(len(text1)):
            if text2[0]==text1[i]:
                while i <= len(text1)-1:
                    dp[i][0]=1
                    i+=1
                break
        for j in range(len(text2)):
            if text1[0]==text2[j]:
                while j <= len(text2)-1:
                    dp[0][j]=1
                    j+=1
                break
 
        for i in range(1,len(text1)):
            for j in range(1,len(text2)):
                if text1[i]==text2[j]:
                    dp[i][j]=dp[i-1][j-1]+1
                else:
                    dp[i][j]=max(dp[i-1][j],dp[i][j-1])
 
        return dp[-1][-1]

1035. 不相交的线

思路:

本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!

那么本题就和我们刚刚讲过的这道题目动态规划:1143.最长公共子序列 (opens new window)就是一样一样的了。

一样到什么程度呢? 把字符串名字改一下,其他代码都不用改,直接copy过来就行了。

代码:

class Solution:
    def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
        # 创建一个二维数组 dp,用于存储最长公共子序列的长度
        dp = [[0] * (len(nums2) + 1) for _ in range(len(nums1) + 1)]
        
        # 遍历 text1 和 text2,填充 dp 数组
        for i in range(1, len(nums1) + 1):
            for j in range(1, len(nums2) + 1):
                if nums1[i - 1] == nums2[j - 1]:
                    # 如果 text1[i-1] 和 text2[j-1] 相等,则当前位置的最长公共子序列长度为左上角位置的值加一
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    # 如果 text1[i-1] 和 text2[j-1] 不相等,则当前位置的最长公共子序列长度为上方或左方的较大值
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
        
        # 返回最长公共子序列的长度
        return dp[len(nums1)][len(nums2)]
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

53. 最大子数组和

思路:

这道题之前我们在讲解贪心专题的时候用贪心算法解决过一次,贪心算法:最大子序和 (opens new window)

这次我们用动态规划的思路再来分析一次。

动规五部曲如下:

1.确定dp数组(dp table)以及下标的含义

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]。

2.确定递推公式

dp[i]只有两个方向可以推出来:

  • dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
  • nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

3.dp数组如何初始化

从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。

dp[0]应该是多少呢?

根据dp[i]的定义,很明显dp[0]应为nums[0]即dp[0] = nums[0]。

4.确定遍历顺序

递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。

5.举例推导dp数组

以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下: 

53.最大子序和(动态规划)

注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6]。

代码:

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        dp = [0] * len(nums)
        dp[0] = nums[0]
        result = dp[0]

        for i in range(1, len(nums)):
            dp[i] = max(dp[i-1] + nums[i], nums[i]) #状态转移公式
            result = max(result, dp[i]) #result 保存dp[i]的最大值
        
        return result
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

另一个版本 

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        dp=[0]*len(nums)
        dp[0]=nums[0]

        for i in range(1,len(nums)):
            if nums[i]+dp[i-1]>nums[i]:
                dp[i]=nums[i]+dp[i-1]
            else:
                dp[i]=nums[i]
        
        return max(dp)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值