topic model的介绍性文章已经很多,在此仅做粗略介绍,本文假设读者已经较为熟悉Topic Medel。
Topic Model (LDA)认为一个离散数据集合(如文档集合,图片集合,为行文方便,本文统统以文档集合作为描述对象,其他的数据集合只需换掉对应的术语即可)是由隐含在数据集合背后的topic set 生成的,这个set中的每一个topic都是词的概率分布。对于文档中的每一篇文档,先抽取一个topics proportion \theta;然后对于这个文档中的每一个词的位置 w_i, LDA 先从\theta中选择一个topic,然后再从这个topic对应的词分布中选择一个词去填充;按照上述步骤直到整个文档集合产生完毕。
上述是LDA生成一个文档集合过程的简要介绍,下面我会把目前出现的topic models进行分门别类。
我认为topic models主要可以分为四大类:1)无监督的、无层次结构的topic model;2)无监督的、层次结构的topic model;3)有监督的、无层次结构的topic model;4)有监督的、层次结构的topic model。
对于1)主要有: PLSA, LDA, Correlated Topic Model, PAM,Concept Topic Model等
对于2)主要有: HLDA, HDP,HPAM等
对于3)主要有: S-LDA, Disc-