函数可导但是导函数不一定连续

探讨了在[0,1]区间上定义的函数g(x)=x²sin(1/x),x≠0,及g(0)=0的性质。尽管g(x)连续,其导函数g′(x)在x=0处不连续。进一步,通过构造函数f(x)=∑n=0∞1/2ⁿg(x-rₙ),展示了在[0,1]区间上,该函数在所有有理数点不连续而在无理数点连续的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

节选自 汪林《实分析中的反例》

在[0,1]上定义函数g(x)=x2sin1x,x≠0,补充定义g(0)=0, 则函数g(x)为连续函数,图形如下。

导函数可求得

g′(x)=2xsin1x−cos1x,x≠0

并且g′(0)=0, 所以g′(x)在x=0处并不连续。导函数存在但并非R上连续函数。

设{rn}为闭区间[0,1]之间所有的有理数,则函数f(x)=∑n=0∞12ng(x−rn)在[0,1]一致收敛f′(x)=∑n=0∞12ng′(x−rn)。在[0,1]上的有理数点rn上不连续,在[0,1]上的无理数点连续。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值