牛客练习赛93 B(等寒假再好好练题,俺要学英语)

本文介绍了一种优化的动态规划方法,解决了一个关于n个数的m轮选择问题,目标是在每轮选取后得分的累积和对k取模时包含7或9的方案数。作者分享了如何通过取模技巧减少计算复杂度,并给出了实际的代码实现和比赛背景。
摘要由CSDN通过智能技术生成

题目

题意: 给定n个数,进行m轮相互独立的选择,每一轮在n个数中任意选择一个数ai。得分为每次选择的数的累加和 % k,k为模数。求m轮过后分值中包含7或者9的方案数之和。
n = 100,m = 50,k = 50.

思路: 数据范围很小,考虑dp. f[i][j]表示前i轮,体积为j的方案数。f[i][j] 可以从 f[i-1][j - a[t]]转移,t = 1到n,花O(n)时间枚举从哪个数转移.
时间复杂度: O(m * k * n)
我赛时写了一个 nmkn的,50005000,也过了。当时想的是只要我一个数 % k以后满足含7、9就行,每次获得的分数 < k,最多获得n * k,体积本来只用算k的,算成了n * k,幸好数据范围小。
对于这种要对状态取模的dp注意取模,数据范围就是给定的变量了。 pay attention

代码:

// Problem: 斗地主
// Contest: NowCoder
// URL: https://ac.nowcoder.com/acm/contest/11183/B
// Memory Limit: 524288 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<complex>
#include<cstring>
#include<cmath>
#include<vector>
#include<map>
#include<unordered_map>
#include<list>
#include<set>
#include<queue>
#include<stack>
#define OldTomato ios::sync_with_stdio(false),cin.tie(nullptr),cout.tie(nullptr)
#define fir(i,a,b) for(int i=a;i<=b;++i) 
#define mem(a,x) memset(a,x,sizeof(a))
#define p_ priority_queue
// round() 四舍五入 ceil() 向上取整 floor() 向下取整
// lower_bound(a.begin(),a.end(),tmp,greater<ll>()) 第一个小于等于的
// #define int long long //QAQ
using namespace std;
typedef complex<double> CP;
typedef pair<int,int> PII;
typedef long long ll;
// typedef __int128 it;
const double pi = acos(-1.0);
const int INF = 0x3f3f3f3f;
const ll inf = 1e18;
const int N = 102;
const int M = 1e6+10;
const int mod = 1e9+7;
const double eps = 1e-6;
inline int lowbit(int x){ return x&(-x);}
template<typename T>void write(T x)
{
    if(x<0)
    {
        putchar('-');
        x=-x;
    }
    if(x>9)
    {
        write(x/10);
    }
    putchar(x%10+'0');
}
template<typename T> void read(T &x)
{
    x = 0;char ch = getchar();ll f = 1;
    while(!isdigit(ch)){if(ch == '-')f*=-1;ch=getchar();}
    while(isdigit(ch)){x = x*10+ch-48;ch=getchar();}x*=f;
}
#define int long long
int n,m,k,T;
int a[N];
int f[N][N]; //前i轮,凑出j的方案数
bool check(int x)
{
	string s = to_string(x);
	for(int i=0;i<s.length();++i) if(s[i]=='7'||s[i]=='9') return true;
	return false;
}
int ans = 0;
int sum = 0;
void solve()
{
   read(m); read(n); read(k);
   for(int i=1;i<=n;++i) read(a[i]);
   // sort(a+1,a+n+1); reverse(a+1,a+n+1);
   f[0][0] = 1;
   for(int i=1;i<=m;++i) //枚举轮数
   {
   	 for(int j=0;j<k;++j)
   	 {
   	 	for(int t=1;t<=n;++t)
   	 	{
   	 		f[i][j] = ( f[i][j] + f[i-1][(j - a[t] + k) % k] ) %mod;
   	 	}
   	 }
   }
   for(int i=0;i<k;++i)
   {
   	  if(check(i))
   	  {
   	  	ans = (ans + f[m][i]) % mod;
   	  }
   }
   write(ans);
}
signed main(void)
{  
   T = 1;
   // OldTomato; cin>>T;
   // read(T);
   while(T--)
   {
   	 solve();
   }
   return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值