题目
题意: 给定数组a,两个人轮流操作,每次操作可以选一个正整数使得他-1。也就是说最多减少到0。但是额外有m条限制,在操作完成后,x这个数不得超过y次。
思路: 可以发现其实这个限制没有什么用,除非有限制个数为0个的。因为我限制了2个3,达到2个3之后就可以减少到2,就可以打破限制了,这样一直减还是可以减少到0。所以以限制个数为0个的查询进行分段,之后根据其他限制每个数尽可能地减少即可。
PS: 注意如果限制2个0,也是有限制的。也就是说,可以设置边界为0个-1,这样就可以统一处理。当时赛场上也没想到,分开讨论的,敲的太麻烦了。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int N = 1e5+10;
int n,m,k,T;
int a[N];
void solve()
{
bool xian = 1;
map<int,int> mp,cnt;
vector<PII> va;
ll ans = 0;
int mx = 0;
cin>>n>>k;
for(int i=1;i<=n;++i) cin>>a[i],mx = max(mx,a[i]),cnt[a[i]]++;
va.push_back({-1,0}); va.push_back({mx+1,0});
while(k--)
{
int x,y; cin>>x>>y;
va.push_back({x,y});
}
sort(a+1,a+n+1);
sort(va.begin(),va.end());
vector<int> res; //0对应的下标
for(int i=0;i<va.size();++i) if(va[i].second==0) res.push_back(i);
for(int i=0;i<res.size()-1;++i)
{
int l = res[i];
int r = res[i+1];
int j;
int idx = lower_bound(a+1,a+n+1,va[l].first+1)-a; //0个1,大于等于1
int idx2 = lower_bound(a+1,a+n+1,va[r].first)-a; //0个9,严格小于9的位置
idx2--;
for(j=l+1;j<r;++j)
{
int x1 = va[j-1].first; //数
int y1 = va[j-1].second; //数量限制
int x2 = va[j].first;
int y2 = va[j].second;
if(x2==x1+1) //有限制
{
while(idx<=idx2&&a[idx]<=x2) idx++;
while(idx<=idx2&&cnt[x2]<y2)
{
cnt[a[idx]]--;
cnt[x2]++;
ans += a[idx]-x2;
idx++;
}
}
else
{
break;
}
}
int lst = va[j-1].first+1;
while(idx<=idx2&&a[idx]<=lst) idx++;
while(idx<=idx2)
{
cnt[a[idx]]--;
ans += a[idx]-lst;
idx++;
}
}
if(ans&1) xian = 1;
else xian = 0;
if(xian) cout<<"Pico\n";
else cout<<"FuuFuu\n";
}
signed main(void)
{
cin>>T;
while(T--)
{
solve();
}
return 0;
}
/*
1
3 2
3 3 4
0 2
1 1
*/