MATLAB仿真及其简单应用

聚类分析作为一种常用方法,其主要流程分为以下几步。
1.将数据展示在面板上

% 随机生成5个中心以及标准差
s = rng(5,'v5normal');
zhong = round((rand(5,2)-0.5)*40);
yi= round(rand(5,2)*30)/6;
X = [mvnrnd(mu(1,:),sigma(1,:),200);
mvnrnd(mu(2,:),sigma(2,:),300);
mvnrnd(mu(3,:),sigma(3,:),400);
mvnrnd(mu(4,:),sigma(4,:),500);
mvnrnd(mu(5,:),sigma(5,:),600)];
% 作图
P1 = figure;clf;
scatter(X(:,1),X(:,2),10,'r');

2.利用不同的算法进行带入分析
1 高斯混合聚类代码

% 
options = statset('Display','off');
gm = gmdistribution.fit(X,3,'Options',options);
P1 = figure;clf
scatter(X(:,1),X(:,2),10,'ro');
hold on
ezcontour(@(x,y) pdf(gm,[x,y]),[-30 30],[-25 20]);
hold off
P2 = figure;clf
scatter(X(:,1),X(:,2),20,'ro');
hold on
ezsurf(@(x,y) pdf(gm,[x,y]),[-30 30],[-25 20]);
hold off
view(25,40)
cluster1 = (cidx3 == 1);
cluster2 = (cidx3 == 2);
cluster3 = (cidx3 == 3);
cluster4 = (cidx3 == 4);
cluster5 = (cidx3 == 5);
% 计算分类概率
P = posterior(gm,X);
P8 = figure;clf
plot3(X(cluster1,1),X(cluster1,2),P(cluster1,1),'r.')
grid on;hold on
plot3(X(cluster2,1),X(cluster2,2),P(cluster2,2),'bo')
plot3(X(cluster3,1),X(cluster3,2),P(cluster3,3),'g*')
plot3(X(cluster4,1),X(cluster4,2),P(cluster4,4),'g-')
plot3(X(cluster5,1),X(cluster5,2),P(cluster5,5),'r*')
legend(' 1 类',' 2 类',' 3 类',' 4 类',' 5 类''Location','NW')
clrmap = jet(80); colormap(clrmap(9:72,:))
ylabel(colorbar,'Component 1 Posterior Probability')
view(-50,30);
% 概率图
P9 = figure;clf
[~,order] = sort(P(:,1));
plot(1:size(X,1),P(order,1),'r-',1:size(X,1),P(order,2),'b-',1:size(X,1),P(order,3),'y-');
legend({'Cluster 1 Score' 'Cluster 2 Score' 'Cluster 3 Score''Cluster 4 Score''Cluster 5 Score'},'location','NW');
ylabel('Cluster Membership Score');
xlabel('Point Ranking');

2 K均值聚类算法

[cidx3,cmeans3,sumd3,D3] = kmeans(X,3,'dist','sqEuclidean');
P4 = figure;clf;
[silh3,h3] = silhouette(X,cidx3,'sqeuclidean');
P5 = figure;clf
ptsymb = {'bo','ro','go',',mo','c+'};
MarkFace = {[0 0 1],[.8 0 0],[0 .5 0]};
hold on
for i =1:3
clust = find(cidx3 == i);
plot(X(clust,1),X(clust,2),ptsymb{i},'MarkerSize',3,'MarkerFace',MarkFace{i},'MarkerEdgeColor','black');
plot(cmeans3(i,1),cmeans3(i,2),ptsymb{i},'MarkerSize',10,'MarkerFace',MarkFace{i});
end
hold off

3 分层聚类算法代码
又叫系统聚类,基本思路是将多个样本各作为一类,计算样本两两之间的距离,合并距离最近的两类成新的一类,然后再计算距离,再合并,直到只有一类为止。层次聚类可以处理分类数据和定量数据,但处理速度相对较慢,通常情况下需要结合相关结果进行主观判断聚类类别数量。

eucD = pdist(X,'euclidean');
clustTreeEuc = linkage(eucD,'average');
cophenet(clustTreeEuc,eucD);
P3 = figure;clf;
[h,nodes] =? dendrogram(clustTreeEuc,20);
set(gca,'TickDir','out','TickLength',[.002 0],'XTickLabel',[]);
展开阅读全文

Git 实用技巧

11-24
这几年越来越多的开发团队使用了Git,掌握Git的使用已经越来越重要,已经是一个开发者必备的一项技能;但很多人在刚开始学习Git的时候会遇到很多疑问,比如之前使用过SVN的开发者想不通Git提交代码为什么需要先commit然后再去push,而不是一条命令一次性搞定; 更多的开发者对Git已经入门,不过在遇到一些代码冲突、需要恢复Git代码时候就不知所措,这个时候哪些对 Git掌握得比较好的少数人,就像团队中的神一样,在队友遇到 Git 相关的问题的时候用各种流利的操作来帮助队友于水火。 我去年刚加入新团队,发现一些同事对Git的常规操作没太大问题,但对Git的理解还是比较生疏,比如说分支和分支之间的关联关系、合并代码时候的冲突解决、提交代码前未拉取新代码导致冲突问题的处理等,我在协助处理这些问题的时候也记录各种问题的解决办法,希望整理后通过教程帮助到更多对Git操作进阶的开发者。 本期教程学习方法分为“掌握基础——稳步进阶——熟悉协作”三个层次。从掌握基础的 Git的推送和拉取开始,以案例进行演示,分析每一个步骤的操作方式和原理,从理解Git 工具的操作到学会代码存储结构、演示不同场景下Git遇到问题的不同处理方案。循序渐进让同学们掌握Git工具在团队协作中的整体协作流程。 在教程中会通过大量案例进行分析,案例会模拟在工作中遇到的问题,从最基础的代码提交和拉取、代码冲突解决、代码仓库的数据维护、Git服务端搭建等。为了让同学们容易理解,对Git简单易懂,文章中详细记录了详细的操作步骤,提供大量演示截图和解析。在教程的最后部分,会从提升团队整体效率的角度对Git工具进行讲解,包括规范操作、Gitlab的搭建、钩子事件的应用等。 为了让同学们可以利用碎片化时间来灵活学习,在教程文章中大程度降低了上下文的依赖,让大家可以在工作之余进行学习与实战,并同时掌握里面涉及的Git不常见操作的相关知识,理解Git工具在工作遇到的问题解决思路和方法,相信一定会对大家的前端技能进阶大有帮助。
©️2020 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值