C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现动物分类 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现动物分类 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8-CLS ONNX 模型做动物分类;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
C# WinForms工业相机+本地图像 通过YoloV8模型实现PCB板缺陷检测 源码
C# WinForms工业相机+本地图像 通过YoloV8模型实现PCB板缺陷检测 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8 ONNX 模型做“missing_hole”检测;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
C# WinForms工业相机+本地图像 通过YoloV8模型实现人物识别 源码
C# WinForms工业相机+本地图像 通过YoloV8模型实现人物识别 源码,
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8 ONNX 模型做“person”检测;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
11185752-UDP-Win64-x64-011005-VQXT-120M.HS
11185752_UDP_Win64_x64_011005_VQXT-120M.HS
普中51单片机开发攻略-V1.2-基于普中-2&普中-3&普中-4.pdf### 普中51单片机开发攻略-V1.2:基于普中-2&普中-3&普中-4的单片机学习与实验指南
内容概要:本文档是关于普中51单片机开发攻略,旨在帮助初学者快速掌握51单片机开发技能。文档内容详尽,从单片机的选择、学习方法、硬件搭建到具体实验项目均有涉及。文中特别强调了51单片机的优势,如资料丰富、上手容易等,并指出学习单片机的关键在于实践。文档还介绍了51单片机最小系统的设计,包括晶振电路、复位电路、电源电路和下载电路,确保单片机能正常工作并能更新程序。此外,文档还详细讲解了多个实验案例,如PWM、LCD显示、触摸屏、直流电机控制等,每个实验都配有详细的硬件设计、软件设计和实验现象说明,帮助读者更好地理解和掌握相关知识。
适合人群:对单片机开发感兴趣的初学者,尤其是有一定电子电路基础和技术背景的人士;计划从事嵌入式系统开发或相关领域的学生和工程师。
使用场景及目标:①帮助初学者了解单片机的基本原理和应用场景;②通过一系列循序渐进的实验项目,逐步提升读者的实际动手能力和解决问题的能力;③为后续深入学习其他类型的单片机或其他嵌入式系统打下坚实的基础。
Python蓝桥杯省赛真题-蓝桥杯省赛真题-蓝桥杯省赛真题
Python蓝桥杯省赛真题-蓝桥杯省赛真题-蓝桥杯省赛真题
蓝桥杯题目和测试数据,覆盖编程各领域,如算法、数据结构等,题型多样
蓝桥杯题目和测试数据。
蓝桥杯题目覆盖编程各领域,如算法、数据结构等,题型多样。测试数据用于检验代码正确性,规模与复杂程度依题目难度而定,助选手提升编程能力。
【深度学习与机器学习】数据集资源汇总:涵盖图像、文本、医疗等多领域数据集收集与整理
内容概要:本文汇总了深度学习、机器学习领域多个优质的数据集资源,包括但不限于AI Studio数据集、天池数据集、Papers With Code数据集、Kaggle 数据集、Graviti Open Datasets、Huggingface数据集、CLUE 数据集等主要平台。同时列举了特定领域的详细数据集,如自动驾驶领域的KITTI、Cityscapes、ApolloScape等数据集,3D视觉领域的3D Photography Dataset、ScanNet等数据集,医疗领域的LIDC-IDRI、DDSM MIAS等数据集。还特别提到了多模态数据集、工业数据集、激光雷达数据集、知乎相关数据集以及图论相关数据集等细分领域资源。文章最后强调了合理利用数据集的重要性,倡导配套项目使用以优化社区生态。;
适合人群:从事深度学习、机器学习研究和开发的技术人员、科研工作者、高校师生以及对人工智能感兴趣的爱好者。;
使用场景及目标:①为研究人员提供丰富的数据来源,支持算法验证和模型训练;②帮助开发者快速找到合适的数据集进行项目开发和竞赛;③辅助教学活动,为课程设计提供素材。;
阅读建议:读者可根据自身需求选择感兴趣的数据集类别进行深入了解,关注每个数据集的特点及其应用场景,同时积极参与到数据集的配套项目实践中,共同维护良好的数据共享环境。
【编程语言领域】Rust编程语言的实践应用与发展前景分析:特性、优势、挑战及应用案例综述
内容概要:本文深入探讨了 Rust 编程语言的实践应用案例,从其发展历程、特点、应用场景、优势、未来发展趋势以及面临的挑战等多个维度进行了全面分析。Rust 自 2006 年由 Mozilla 研究员 Graydon Hoare 开始设计以来,经历了多个重要发展阶段,于 2015 年发布了首个稳定版本,并逐渐在编程社区获得广泛认可。Rust 的核心特点是安全性、高性能、良好的并发支持、可扩展性和跨平台能力。它适用于系统编程、网络编程、并发编程、游戏开发、数据库编程、移动应用开发、Web 开发、机器学习和人工智能等多个领域。Rust 的未来将重点关注性能、安全性、并发性、可扩展性、跨平台支持、社区支持、文档和学习曲线等方面的提升。尽管 Rust 具有诸多优势,但也面临着学习成本高、生态系统不完善、性能瓶颈、并发编程难度大、社区不稳定、跨平台兼容性问题、内存管理复杂和错误处理不够友好的挑战。;
适合人群:对系统编程语言感兴趣的开发者,尤其是那些关注性能、安全性和并发性的程序员。;
使用场景及目标:①了解 Rust 编程语言的发展历程及其在不同编程领域的实际应用;②掌握 Rust 的核心特性,如安全性、高性能、并发支持等;③探索 Rust 在未来的发展方向,评估其在项目中的潜在应用价值。;
其他说明:本文不仅提供了 Rust 编程语言的理论知识,还通过具体的应用实例展示了 Rust 在实际项目中的应用效果,帮助读者更好地理解和应用这一强大的编程语言。
【数据库技术】SQL常用语法总结与实战案例解析:涵盖单表多表查询、窗口函数及常用函数应用
内容概要:本文档旨在帮助那些习惯使用Python处理数据但常忘却SQL语句的开发者快速复习SQL。文档分为上、中、下三篇及番外篇,涵盖了SQL的基础查询、高级查询及函数应用。上篇主要介绍单表查询、多表查询(包括笛卡尔积、内连接、外连接、合并查询、子查询)和SQL执行顺序;中篇详细讲解窗口函数,如累计函数、排序函数和偏移分析函数;下篇则聚焦于数学函数、字符串函数、日期和时间函数以及条件判断函数(CASE WHEN)。番外篇列举了一些常见问题及其解决方案,如类型转换、日期处理、聚合计算、一列变多行、取Top N、避免数据倾斜等。文档还提供了若干日常用例,从简单到中等难度,涵盖多表联结、聚合函数、子查询等多种应用场景。
适合人群:适合有一定编程基础、熟悉Python但对SQL不够熟练的数据分析师、开发人员或数据库管理员。
使用场景及目标:①帮助读者快速回顾SQL的基本语法和高级特性;②提供实际工作中可能遇到的问题及其解决方案;③通过实例练习提高SQL查询技能,特别是在多表联结、窗口函数和复杂查询方面。
其他说明:本文档不仅包含理论知识,还提供了大量实用的例子,便于读者在实际操作中理解和掌握SQL。建议读者在学习过程中结合自己的项目需求进行实践,逐步积累经验。此外,文档持续更新,以确保内容与时俱进,满足不断变化的技术需求。
【单片机技术】单片机入坑指南:涵盖51单片机、32位单片机及物联网9个实用案例推荐
内容概要:本文是一份《单片机入坑指南》,针对单片机初学者面临的困惑,如学习路径不清晰、开发板选择等问题,提供了详尽的指导。文中将单片机学习划分为三个阶段:“51单片机”、"32系列单片机"、"物联网",并精选了9个实用案例。在51单片机部分,推荐了97%直插件的DIY开发板、STC8G-51单片机开发板以及STC32G12K128最小系统,这些开发板均附带详细的开源资料,便于新手学习焊接、单片机编程等基础知识。对于32位单片机,推荐了几款适合入门的小型开发板和最小系统板,包括STM32F103/205/407Vx小型开发板、立创·梁山派、STM32 Mega Mini等,它们不仅资源丰富,还提供完整的教程和支持。最后,在物联网部分,推荐了ESP8266、基于STM32和涂鸦智能平台的物联网开发板、ESP32-IOT-KIT全开源物联网开发板,帮助用户进一
编程语言Go语言基础教程:涵盖值类型、控制结构、数组、切片与映射的详细案例解析Go语言的基础教学
内容概要:本文通过带注释的示例程序详细介绍了Go语言的基础知识,包括值类型(字符串、整形、浮点型、布尔型)、变量声明与初始化、常量定义、for循环、if/else分支结构、switch语句、数组、切片、关联数组(map)以及range遍历等内容。每个知识点都配有具体的代码示例,帮助读者理解Go语言的核心概念和语法特性。;
适合人群:对编程有一定了解,尤其是希望系统学习Go语言的初学者或有经验的开发者。;
使用场景及目标:①掌握Go语言的基本语法和数据类型,为后续深入学习打下坚实基础;②通过实际代码练习,理解并应用Go语言的关键特性,如数组、切片、map等数据结构;③学会使用for循环、if/else、switch等控制流语句解决实际编程问题。;
阅读建议:本文以实例为主,建议读者跟随示例代码逐步实践,理解每个代码片段的功能和背后的原理,同时可以尝试修改代码以加深理解。此外,建议读者在学习过程中多查阅官方文档,以便更好地掌握Go语言的细节和最佳实践。
【JavaScript编程】25个神奇的JavaScript示例解析:探索语言特性与面试知识点汇总
内容概要:本文展示了25个神奇的JavaScript示例,涵盖了从基础到复杂的各种特性。这些示例不仅揭示了JavaScript中一些令人惊讶的行为,还解释了其背后的工作原理。其中包括布尔值与数字的转换、数组和字符串的特殊行为、NaN的比较、类型转换、parseInt的怪异行为、HTML注释在JavaScript中的有效性、浮点数精度问题等。每个示例都配有详细的说明和代码示例,帮助读者更好地理解JavaScript的内部机制。
适合人群:适合所有层次的JavaScript开发者,特别是初学者和中级开发者。对于初学者来说,这些示例可以帮助他们深入理解JavaScript的基础知识;对于中级开发者来说,这些示例可以加深他们对JavaScript内部机制的理解,并为面试准备提供有用的参考资料。
使用场景及目标:①帮助初学者理解JavaScript中的一些非直觉行为及其原因;②为中级开发者提供深入理解JavaScript内部机制的机会;③作为面试准备的资源,帮助开发者熟悉常见的JavaScript陷阱和难题;④作为公司内部培训的新手访问问题和测验资源。
其他说明:阅读这些示例时,建议读者结合JavaScript规范进行学习,以便更全面地理解每个示例背后的逻辑。此外,这些示例不仅展示了JavaScript的奇特之处,还提醒开发者在编写代码时要注意避免潜在的陷阱。
【Linux C++开发】基于Web多人聊天系统的C++项目实践:技术栈与部署流程详解
内容概要:本文详细介绍了在Linux环境下进行C++开发所需掌握的内容,以一个Web多人聊天项目为例,涵盖从开发环境搭建到项目部署的全过程。首先推荐了一个项目地址,该项目支持HTTP请求、Websocket、多房间和多人聊天、MySQL用户信息存储、Redis缓存、json序列化等功能,并建议扩展功能如基于Reactor模型构建HTTP/Websocket服务、仿写MySQL/Redis连接池等。接着介绍了开发环境,包括Ubuntu 20.04、MySQL 8.0、Redis 6.0、gcc/g++ 10.5.0等,并提供了详细的部署步骤,如安装boost库、编译聊天室服务、配置MySQL和Redis等。最后分析了项目架构,包括数据存储(MySQL存储用户信息,Redis存储房间消息和用户cookie)、消息格式(HTTP请求消息和Websocket交互消息)、HTTP/Websocket数据处理流程等。;
适合人群:有一定Linux基础,想深入了解C++开发及网络编程的开发者,尤其是有志于从事Web开发或服务器端开发的技术人员。;
使用场景及目标:①掌握Linux C++开发环境的搭建,包括工具链的安装与配置;②理解并实践HTTP、Websocket等网络协议的应用;③熟悉MySQL、Redis等数据库的使用;④学习如何处理HTTP请求、Websocket交互消息及数据存储;⑤能够独立完成类似Web聊天室的项目开发。;
其他说明:本文不仅提供了理论指导,还给出了具体的实践操作步骤,如编译过程中可能遇到的问题及解决方案。对于初学者来说,可以按照文中提供的链接和教程逐步学习,同时鼓励读者根据自身需求对项目进行扩展和优化。
【机器人开发】基于模型的机器人开发方法(MBD)全流程解析:从需求分析到测试验证的工具链支持及案例分享
内容概要:文章介绍了基于模型的机器人开发方法(MBD)及其应用案例。随着机器人系统的日益复杂,传统开发方法难以应对现代需求。MBD作为一种以模型为中心的产品开发方法,贯穿产品生命周期,涵盖需求分析、系统设计、代码生成、测试验证等环节。MBD不仅简化了开发流程,还提高了团队沟通效率、降低了开发风险、提升了产品质量。文章详细描述了基于V模型的MBD开发流程,包括需求管理、系统设计、模块设计、代码实现、测试验证等各个阶段的具体操作和工具链支持。此外,文章还通过多个实际案例展示了MBD在机器人开发中的应用,如手持仪器软件架构设计、机器人接口模板设计、机器人算法开发以及MIL和PIL测试。
适合人群:具备一定机器人开发经验的研发人员,尤其是从事机器人系统设计、控制算法开发、嵌入式系统开发的工程师和研究人员。
使用场景及目标:①适用于复杂机器人系统的开发,帮助团队更好地管理需求、设计架构、生成代码、测试验证;②通过MBD工具链支持,提升开发效率,减少人为错误,确保系统质量和安全性;③帮助团队在设计阶段进行仿真和测试,提前发现并解决潜在问题。
其他说明:MBD工具链涵盖了从需求管理到代码生成的各个环节,支持多种开发流程(如SCRUM, V-Model,XP等)。建议在实践中结合具体项目需求,灵活选用合适的工具和方法。MBD不仅能提高开发效率,还能促进团队协作和知识管理,是未来机器人开发的重要趋势。
【编程语言领域】Kotlin语言特性、应用领域及基础语法教程:移动开发与Web开发入门指南
内容概要:本文详细介绍了 Kotlin 编程语言的特点、应用领域及其基本语法。Kotlin 是由 JetBrains 在 2016 年发布的现代编程语言,它与 Java 完全兼容,可以在多个平台上运行,并广泛应用于移动应用(特别是 Android)、Web 开发、服务器端应用及数据科学等领域。Kotlin 的优势包括简洁安全、易于学习、免费使用和拥有庞大的社区支持。文章还提供了几个简单的 Kotlin 语法示例,如使用 fun 关键字定义函数、main() 函数作为程序入口、println() 和 print() 函数用于输出文本或数值,以及单行和多行注释的使用方法。;
适合人群:对编程感兴趣的初学者,尤其是有一定 Java 基础的学习者。;
使用场景及目标:①希望快速上手一门现代化编程语言;②计划开发 Android 应用或其他跨平台项目;③需要理解 Kotlin 语法基础并能编写简单程序。;
其他说明:Kotlin 不仅适用于专业开发者,也适合编程爱好者学习,其与 Java 的兼容性使得从 Java 转型到 Kotlin 成为可能,同时官方提供的丰富资源和工具链有助于加速学习进程。
数学建模基于Matlab的先进算法讲义:神经网络、遗传算法、模拟退火及模糊数学方法的应用与程序设计
内容概要:本文档是一份来自中国科学技术大学的《Matlab先进算法讲义》,主要介绍了数学建模中常用的四种算法:神经网络算法、遗传算法、模拟退火算法和模糊数学方法。每种算法均以应用为导向,简要讲解其原理、结构、分类及其在数学建模中的具体应用实例。对于神经网络,重点介绍了感知器和BP网络,展示了如何通过训练网络来解决分类问题;遗传算法则模拟生物进化过程,用于求解优化问题;模拟退火算法借鉴了物理退火过程,适用于组合优化问题;模糊数学方法通过隶属度的概念处理模糊决策问题。文中还提供了部分算法的Matlab和C语言程序代码,帮助读者更好地理解和应用这些算法。
适合人群:具备一定数学建模基础、对Matlab有一定了解的高校学生及科研人员。
使用场景及目标:①学习神经网络、遗传算法、模拟退火算法和模糊数学方法的原理及其应用场景;②掌握如何利用这些算法解决实际问题,如分类、优化、决策等;③能够编写和调试相关算法的程序代码,应用于数学建模竞赛或科研项目中。
其他说明:本文档侧重于算法的应用而非深入理论探讨,旨在帮助读者快速入门并应用于实际问题解决。读者应结合提供的程序代码进行实践,以加深理解。
移动开发Swift编程语言教程精选:涵盖iOS、tvOS、watchOS应用开发实例及游戏开发
内容概要:本文介绍了10余个优秀的 Swift 教程实例,涵盖从初学者到高级开发者的不同层次。Swift 作为一门较新的编程语言,因其高效、安全、易用等特点受到苹果开发者青睐。教程内容丰富多样,包括创建首个 iOS 游戏(如 Swiftiris、Crashy Plane),开发实用工具(如小费计算器),实现设备间通信(如 Multipeer Connectivity),利用 iBeacons 技术进行定位,构建 Apple TV 应用,使用 Parse 实现用户注册登录,开发菜单栏应用,集成社交媒体分享功能等。每个教程都详细讲解了开发流程和技术要点,帮助开发者掌握 Swift 编程技巧,快速上手实际项目开发。
适合人群:适用于不同水平的苹果平台开发者,包括初学者、中级开发者以及希望深入了解特定领域的高级开发者。
使用场景及目标:①初学者可以通过入门级教程掌握 Swift 基础语法和基本应用开发技能;②中级开发者能通过实战项目提升编程能力,熟悉常用框架和工具;③高级开发者可深入研究特定技术领域,如设备间通信、定位服务、云服务集成等,以满足复杂应用场景的需求。
其他说明:文中还推荐了一些权威的学习资源,如苹果官方发布的《The Swift Programming Language》书籍和 TutorialsPoint 提供的在线 Swift 教程,帮助开发者系统地学习 Swift 语言。同时强调选择合适的教程可以节省大量学习时间,提高效率。
编程语言TypeScript基础教程:涵盖安装、类型、类与模块的快速入门指南
内容概要:本文档是一份《TypeScript基础傻瓜式教程》,旨在帮助初学者快速掌握TypeScript的基础知识。首先介绍了TypeScript的概念,它是JavaScript的超集,增加了静态类型和其他高级功能。接着详细讲解了TypeScript的安装方法以及如何创建并运行第一个TypeScript文件。随后,文档依次介绍了TypeScript中的基础类型(如字符串、数字、布尔)、接口、类、函数、泛型、枚举和模块等核心概念,并通过具体的代码示例加深理解。每个部分都配有简单的实例代码,便于读者实践操作,确保能真正理解和应用所学知识。;
适合人群:适合想要学习或转型到TypeScript的前端开发者,特别是有一定JavaScript基础的新手程序员。;
使用场景及目标:①帮助开发者理解TypeScript相对于JavaScript的优势;②让读者能够独立编写简单的TypeScript程序,熟悉其语法和特性;③为后续深入学习TypeScript打下坚实的基础。;
其他说明:此教程以实战为导向,注重理论与实践相结合,推荐读者边学边练,亲自尝试每个代码示例,以获得更好的学习效果。
【Python编程教育】21个有趣实用的Python脚本案例:从入门到精通的项目实践指南
内容概要:本文介绍了21个有趣的Python脚本,旨在帮助读者从零基础逐步掌握Python编程技能。这些脚本涵盖了从简单的“Hello, World!”程序到较为复杂的网络爬虫、天气应用、自动化文件整理等实用工具。每个脚本都配有详细的解释,包括代码功能、涉及的核心概念以及应用场景。例如,“Hello, World!”作为编程入门的基础;简易计算器演示了基本的数学运算;猜数字游戏展示了随机数生成和条件判断;石头剪刀布游戏则引入了列表和随机选择的概念;待办事项列表实现了简单的任务管理功能;基础网页抓取器和天气应用则涉及到外部API的调用。此外,还包括了如密码生成器、质数检查器、定时邮件发送、文件批量重命名等实用工具的实现。
适合人群:零基础的编程初学者或对Python感兴趣的任何人。
使用场景及目标:①帮助新手理解Python的基本语法和常用库的使用方法;②通过实际项目练习提高编程能力;③提供一系列实用工具,满足日常生活和工作中的一些常见需求;④激发读者对编程的兴趣,鼓励进一步深入学习。
阅读建议:由于文章内容丰富且涉及多个知识点,建议读者按照由浅入深的原则依次学习各个脚本。对于每个脚本,不仅要关注代码本身,更要理解背后的逻辑和实现思路。同时,尝试自己动手编写和修改代码,以加深理解和记忆。对于有API调用的脚本,需提前准备好相关API密钥,并确保安装了所需的第三方库。
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现PCB上二维码检测识别 源码
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149686457
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做实现PCB上二维码检测识别;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现卫星图像识别 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现卫星图像识别 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做实现卫星图像识别;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149615715
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现卫星图像识别(C#代码,UI界面版)
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现条码一维码检测识别 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现条码一维码检测识别 源码
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149687497
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做实现条码一维码检测识别;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现汽车牌照的位置识别 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现汽车牌照的位置识别 源码
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149784541
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做实现汽车牌照的位置识别;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现汽车牌照的位置识别(C#代码,UI界面版)
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现裂缝的检测识别 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现裂缝的检测识别 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做实现裂缝的检测识别;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149783491
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码,UI界面版)
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现持械检测 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现持械检测 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做刀具识别实现持械检测;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149548378
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现沙滩小人识别检测 (C#代码,UI界面版)
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现轮船识别检测 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现轮船识别检测 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做实现轮船识别检测;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149674428
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现轮船识别检测 (C#代码,UI界面版)
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现沙滩小人识别检测 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现沙滩小人识别检测 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做实现沙滩小人识别检测 ;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149651926
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现沙滩小人识别检测 (C#代码,UI界面版)
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现火灾检测 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现火灾检测 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做实现火灾检测 ;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149651773
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现火灾检测 (C#代码,UI界面版)
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现无人机检测识别 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现无人机检测识别 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做实现无人机检测识别 ;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149651926
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现无人机检测识别 (C#代码,UI界面版)
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现工人安全装备(安全帽、手套、马甲等)检测识别 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现工人安全装备(安全帽、手套、马甲等)检测识别 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做工人安全装备(安全帽、手套、马甲等)的检测识别;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149594380
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型通过YoloV8深度学习模型实现工人安全装备(安全帽、手套、马甲等)检测识别 (C#)
数据集资源地址:https://download.csdn.net/download/xianzuzhicai/91473223
YOLO工人安全装备(安全帽、手套、马甲等)检测数据集
YOLO工人安全装备(安全帽、手套、马甲等)检测数据集
YOLO工人安全装备(安全帽、手套、马甲等)检测数据集
代码资源地址:https://download.csdn.net/download/xianzuzhicai/91469621
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现工人安全装备(安全帽、手套、马甲等)检测识别 源码
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149594380
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型通过YoloV8深度学习模型实现工人安全装备(安全帽、手套、马甲等)检测识别 (C#)
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现工厂自动化产线牛奶瓶盖实时装配的检测识别 源码
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149930218
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做实现工厂自动化产线牛奶瓶盖实时装配的检测识别;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现工厂自动化产线牛奶瓶盖实时装配的检测识别(C#代码,UI界面版)
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现各类垃圾的分类检测 源码
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149878351
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做实现各类垃圾的分类检测;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现各类垃圾的分类检测(C#代码,UI界面版)
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现睡岗检测 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现睡岗检测 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做睡岗检测;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现电池的检测识别 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现电池的检测识别 源码
介绍博客地址:https://blog.csdn.net/xianzuzhicai/article/details/149739480
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做实现电池的检测识别;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现电池的检测识别(C#代码,UI界面版)
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现水下鱼类识别 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现水下鱼类识别 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做水下鱼类识别;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现人脸识别检测 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现人脸识别检测 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做人脸识别;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现打架检测 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现打架检测 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做打架检测;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现螺母螺丝的分类检测 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现螺母螺丝的分类检测 源码
C# WinForms工业相机+本地图像 通过YoloV8深度学习模型实现动物分类 源码
下面是一份可直接跑起来的 C# WinForms Demo 源码
功能如下所示:
1、用工业相机 SDK(以Baumer SDK为例)或本地文件获取图像;
2、调用 YOLOv8n ONNX 模型做动物分类;
3、在 WinForms 上实时画框并给出置信度。
4、代码结构简单,方便你替换成 Basler、Daheng、OpenCV 采集等其它工业相机接口。
5、可以熟练调用yolo模型的使用