求三个数的最大公约数和最小公倍数

题目:求两个正整数的最大公约数和最小公倍数。
基本要求:1.程序风格良好(使用自定义注释模板),两种以上算法解决最大公约数问题,提供友好的输入输出。
提高要求:1.三种以上算法解决两个正整数最大公约数问题。
2.求3个正整数的最大公约数和最小公倍数
思路: 运用辗转相除法,辗转相加法和穷举法可以求出最大公约数
根据最小公倍数=两数相乘再除以最大公约数可以求出最小公倍数
程序流程图:
1.辗转相除法求最大公约数
这里写图片描述
2.辗转相减法求最大公约数
这里写图片描述
3.穷举法求最大公约数
这里写图片描述
求三个数的最大公约数:将这三种算法封装成函数,需要求三个数的最大公约数是,先调用函数,将这两个数的最大公约数求出,然后将求出的最大公约数与第三个数调用函数,就可以求出这三个数的最大公约数了,判断:当最大公约数为一时,则输出没有最大公约数
4求最小公倍数
这里写图片描述
求三个数的最小公倍数:先调用函数,求出这两个数的最小公倍数,赋值给一个变量i,
求出i和第三个数的最大公约数,然后再次调用函数,求出的值即为这三个数的最小公倍数
数据测试
1).辗转相除法求最大公约数和最小公倍数
这里写图片描述
这里写图片描述
这里写图片描述
2).辗转相减法求最大公约数和最小公倍数
这里写图片描述
这里写图片描述
这里写图片描述
2)穷举法求最大公约数和最小公倍数
这里写图片描述
这里写图片描述
这里写图片描述
代码块如下

package com.xiao;
import java.util.Scanner;
public class Test {
    public static void main(String args[]) {
        Scanner scanner =new Scanner(System.in);
        while(true) {
            System.out.println("请输入num1,num2,num3三个整数");
            int num1=scanner.nextInt();
            int num2=scanner.nextInt();
            int num3=scanner.nextInt();
            int GCD=GCD(num1,num2);//先求num1和num2两个的最大公约数GCD
            int GCD1=GCD(num3,GCD);//求前两个数的最大公约数GCD和第三个数num3的最大公约数
            if(GCD1==1) {
                System.out.println(num1+" "+num2+" "+num3+"没有最大公约数");//如果余数为1,则没有最大公约数
            }else {
                System.out.println(num1+" "+num2+" "+num3+"的最大公约数为"+GCD1);//如果余数不为1,则输出最大公约数
            }   
            int LCM=LCM(num1,num2,GCD);//先求num1和num2的最小公倍数LCM
            int GCD2=GCD(LCM,num3);//再求LCM和num3的最大公约数
            int LCM1=LCM(LCM,num3,GCD2);//最后求LCM和num3的最小公倍数
            System.out.println(num1+" "+num2+" "+num3+"的最小公倍数为"+LCM1);//输出最小公倍数
        }   
    }

    public static int GCD(int num1,int num2) {
//      //求最大公约数,运用辗转相除法
//      PX(num1,num2);
//      int Remainder =0;//余数
//      Remainder=num1%num2;
//      while(Remainder!=0) {
//          num1=num2;
//          num2=Remainder;
//          Remainder=num1%num2;
//      }
//      return num2;
//      
//      //辗转相减法
//      while(num1!=num2) {
//          if(num1>num2) {
//              num1=num1-num2;
//          }else {
//              num2=num2-num1;
//          }
//      }
//      return num2;
//      
        //穷举法
        PX(num1, num2);
        int num=0;
        for(int i=num2;i>0;i--) {
            if(num1%i==0&&num2%i==0) {
                num=i;
                break;
            }
        }
        return num;     
    }
    //求最小公倍数,将三个数除以他们的最大公约数,然后相乘,再乘以最大公约数
    public static int LCM(int num1,int num2,int GCD) {
        return num1/GCD*num2;
    }
    //排序,
    public static void PX(int num1,int num2) {
        int a;
        if(num1<num2) {
            a=num1;
            num1=num2;
            num2=a;
        }
    }

}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值