题目:求两个正整数的最大公约数和最小公倍数。
基本要求:1.程序风格良好(使用自定义注释模板),两种以上算法解决最大公约数问题,提供友好的输入输出。
提高要求:1.三种以上算法解决两个正整数最大公约数问题。
2.求3个正整数的最大公约数和最小公倍数
思路: 运用辗转相除法,辗转相加法和穷举法可以求出最大公约数
根据最小公倍数=两数相乘再除以最大公约数可以求出最小公倍数
程序流程图:
1.辗转相除法求最大公约数
2.辗转相减法求最大公约数
3.穷举法求最大公约数
求三个数的最大公约数:将这三种算法封装成函数,需要求三个数的最大公约数是,先调用函数,将这两个数的最大公约数求出,然后将求出的最大公约数与第三个数调用函数,就可以求出这三个数的最大公约数了,判断:当最大公约数为一时,则输出没有最大公约数
4求最小公倍数
求三个数的最小公倍数:先调用函数,求出这两个数的最小公倍数,赋值给一个变量i,
求出i和第三个数的最大公约数,然后再次调用函数,求出的值即为这三个数的最小公倍数
数据测试
1).辗转相除法求最大公约数和最小公倍数
2).辗转相减法求最大公约数和最小公倍数
2)穷举法求最大公约数和最小公倍数
代码块如下
package com.xiao;
import java.util.Scanner;
public class Test {
public static void main(String args[]) {
Scanner scanner =new Scanner(System.in);
while(true) {
System.out.println("请输入num1,num2,num3三个整数");
int num1=scanner.nextInt();
int num2=scanner.nextInt();
int num3=scanner.nextInt();
int GCD=GCD(num1,num2);//先求num1和num2两个的最大公约数GCD
int GCD1=GCD(num3,GCD);//求前两个数的最大公约数GCD和第三个数num3的最大公约数
if(GCD1==1) {
System.out.println(num1+" "+num2+" "+num3+"没有最大公约数");//如果余数为1,则没有最大公约数
}else {
System.out.println(num1+" "+num2+" "+num3+"的最大公约数为"+GCD1);//如果余数不为1,则输出最大公约数
}
int LCM=LCM(num1,num2,GCD);//先求num1和num2的最小公倍数LCM
int GCD2=GCD(LCM,num3);//再求LCM和num3的最大公约数
int LCM1=LCM(LCM,num3,GCD2);//最后求LCM和num3的最小公倍数
System.out.println(num1+" "+num2+" "+num3+"的最小公倍数为"+LCM1);//输出最小公倍数
}
}
public static int GCD(int num1,int num2) {
// //求最大公约数,运用辗转相除法
// PX(num1,num2);
// int Remainder =0;//余数
// Remainder=num1%num2;
// while(Remainder!=0) {
// num1=num2;
// num2=Remainder;
// Remainder=num1%num2;
// }
// return num2;
//
// //辗转相减法
// while(num1!=num2) {
// if(num1>num2) {
// num1=num1-num2;
// }else {
// num2=num2-num1;
// }
// }
// return num2;
//
//穷举法
PX(num1, num2);
int num=0;
for(int i=num2;i>0;i--) {
if(num1%i==0&&num2%i==0) {
num=i;
break;
}
}
return num;
}
//求最小公倍数,将三个数除以他们的最大公约数,然后相乘,再乘以最大公约数
public static int LCM(int num1,int num2,int GCD) {
return num1/GCD*num2;
}
//排序,
public static void PX(int num1,int num2) {
int a;
if(num1<num2) {
a=num1;
num1=num2;
num2=a;
}
}
}