01背包理论基础
void test_2_wei_bag_problem1() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagweight = 4;
// 二维数组
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
// 初始化
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}
// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
cout << dp[weight.size() - 1][bagweight] << endl;
}
int main() {
test_2_wei_bag_problem1();
}
我还没有自己敲一遍,但是这个意思我懂了,==dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);这一步的后面一项就是先在背包现有容量里面减去i的weight,那个时候的值然后再加上value;
这一步也很有意思 == for (int j = weight[0]; j <= bagweight; j++) 就是直接从物品0所消耗的wight开始初始化,其他都是0;
01背包理论基础(滚动数组)
所谓滚动就是把上一层的状态复制到下一层,然后进行计算并覆盖,把一个二维的数组变成了一维。
dpj:容量为j的背包所包含的最大价值。
void test_1_wei_bag_problem() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagWeight = 4;
// 初始化
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
int main() {
test_1_wei_bag_problem();
}
仔细思考一下那个过程。
416.分割等和子集
```
class Solution {
public:
bool canPartition(vector& nums) {
int sum = accumulate(nums.begin(), nums.end(),0);
int target = sum/2;
vectordp(10001,0);
if(sum%2 == 1)return false;
for(int i = 0;i < nums.size();i++){
for(int j = target;j >=nums[i];j–){
dp[j] = max(dp[j], dp[j-nums[i]]+nums[i]);
}
}
if(dp[target] == target) return true;
else return false;
}
};