李宏毅hw-8,auto-encoder for anomaly_detection

一、查漏补缺、熟能生巧:

主要是mu均值 和 logvar对数标准差 std标准差的 处理方面不熟练

二、代码解读:
1.sample_code中提供了3种model:fcn_model 、 conv_model 和 vae_model:

(1)fcn_model的结构非常好理解:

就是通过全连接层进行降维后,又重新升到原来的维度:(当然图像数据首先需要进行flatten)

#定义module的结构
class fcn_autoencoder(nn.Module):
    def __init__(self):
        super(fcn_autoencoder, self).__init__()
        self.encoder = nn.Sequential(
            nn.Linear(64 * 64 * 3, 128),
            nn.ReLU(),
            nn.Linear(128, 64),
            nn.ReLU(), 
            nn.Linear(64, 12), 
            nn.ReLU(), 
            nn.Linear(12, 3)
        )
        
        self.decoder = nn.Sequential(
            nn.Linear(3, 12),
            nn.ReLU(), 
            nn.Linear(12, 64),
            nn.ReLU(),
            nn.Linear(64, 128),
            nn.ReLU(), 
            nn.Linear(128, 64 * 64 * 3), 
            nn.Tanh()
        )

    def forward(self, x):
        x = self.encoder(x)
        x = self.decoder(x)
        return x

(2)conv_model:

和fcn_model的想法一样,只是改用convolution罢了:

class conv_autoencoder(nn.Module):
    def __init__(self):
        super(conv_autoencoder, self).__init__()
        self.encoder = nn.Sequential(
            nn.Conv2d(3, 12, 4, stride=2, padding=1),         
            nn.ReLU(),
            nn.Conv2d(12, 24, 4, stride=2, padding=1),        
            nn.ReLU(),
			      nn.Conv2d(24, 48, 4, stride=2, padding=1),         
            nn.ReLU(),
        )
        self.decoder = nn.Sequential(
			      nn.ConvTranspose2d(48, 24, 4, stride=2, padding=1),
            nn.ReLU(),
			      nn.ConvTranspose2d(24, 12, 4, stride=2, padding=1), 
            nn.ReLU(),
            nn.ConvTranspose2d(12, 3, 4, stride=2, padding=1),
            nn.Tanh(),
        )

    def forward(self, x):
        x = self.encoder(x)
        x = self.decoder(x)
        return x

(3)VAE:Variation Auto_Encoder,这个不是很好理解

所以这里会涉及到均值mu,对数标准差logvar的概念:

class VAE(nn.Module):
    def __init__(self):
        super(VAE, self).__init__()
        self.encoder = nn.Sequential(
            nn.Conv2d(3, 12, 4, stride=2, padding=1),            
            nn.ReLU(),
            nn.Conv2d(12, 24, 4, stride=2, padding=1),    
            nn.ReLU(),
        )
        self.enc_out_1 = nn.Sequential(
            nn.Conv2d(24, 48, 4, stride=2, padding=1),  
            nn.ReLU(),
        )
        self.enc_out_2 = nn.Sequential(
            nn.Conv2d(24, 48, 4, stride=2, padding=1),
            nn.ReLU(),
        )
        self.decoder = nn.Sequential(
			      nn.ConvTranspose2d(48, 24, 4, stride=2, padding=1), 
            nn.ReLU(),
			      nn.ConvTranspose2d(24, 12, 4, stride=2, padding=1), 
            nn.ReLU(),
            nn.ConvTranspose2d(12, 3, 4, stride=2, padding=1), 
            nn.Tanh(),
        )

    def encode(self, x):
        h1 = self.encoder(x)
        return self.enc_out_1(h1), self.enc_out_2(h1)

    def reparametrize(self, mu, logvar): #这个函数
        std = logvar.mul(0.5).exp_()
        if torch.cuda.is_available():
            eps = torch.cuda.FloatTensor(std.size()).normal_()
        else:
            eps = torch.FloatTensor(std.size()).normal_()
        eps = Variable(eps)                    #这一句其实也可以不要
        return eps.mul(std).add_(mu)

    def decode(self, z):
        return self.decoder(z)

    def forward(self, x):
        mu, logvar = self.encode(x)  #这里的初始mu,logvar都是从encode中获取的
        z = self.reparametrize(mu, logvar) #通过reparamizer 得到重建图像z,和对应的mu 和 logvar
        return self.decode(z), mu, logvar

2.对于data数据的获取的话,github上面的数据已经坏掉了,需要自己再kaggle上面下载zip然后把zip穿进自己的notebook,会自动进行解压的
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值