acm集训队课程设置--第六节课

acm集训队课程设置--第六节课

本节内容:关于图论的学习

入门:简单并查集(1272),最小生成树(1863),最短路径(1142,1162)
进阶:图的深度和广度优先遍历,最短路径

什么是并查集?

英文:DisjointSet,即不相交集合
将编号分别为1N的N个对象划分为不相交集合,
在每个集合中,选择其中某个元素代表所在集合。
常见两种操作:
        合两个集合    

        查找某元素属于哪个集合

int pre[1000 ];
int find(int x)     //查找根节点
{ 
    int r=x;
    while ( pre[r] != r )        //返回根节点 r
          r=pre[r];
    int i=x , j ;
    while( i != r )         //路径压缩
    {
         j = pre[ i ]; // 在改变上级之前用临时变量  j 记录下他的值 
         pre[ i ]= r ; //把上级改为根节点
         i=j;
    }
    return r ;
}
void join(int x,int y)                         //判断x y是否连通,
                                                 //如果已经连通,就不用管了 
                                                //如果不连通,就把它们所在的连通分支合并起,
{
    int fx=find(x),fy=find(y);
    if(fx!=fy)
        pre[fx ]=fy;
}

      话说江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们有一个优点就是讲义气,绝对不打自己的朋友。而且他们信奉“朋友的朋友就是我的朋友”,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己人。这样一来,江湖上就形成了一个一个的群落,通过两两之间的朋友关系串联起来。而不在同一个群落的人,无论如何都无法通过朋友关系连起来,于是就可以放心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?

       我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物,这样,每个圈子就可以这样命名“齐达内朋友之队”“罗纳尔多朋友之队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。

      但是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长,要判断自己的队长是谁,只能漫无目的的通过朋友的朋友关系问下去:“你是不是队长?你是不是队长?”这样一来,队长面子上挂不住了,而且效率太低,还有可能陷入无限循环中。于是队长下令,重新组队。队内所有人实行分等级制度,形成树状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就可以在短时间内确定队长是谁了。由于我们关心的只是两个人之间是否连通,至于他们是如何连通的,以及每个圈子内部的结构是怎样的,甚至队长是谁,并不重要。所以我们可以放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。


        下面我们来看并查集的实现。 int pre[1000]; 这个数组,记录了每个大侠的上级是谁。大侠们从1或者0开始编号(依据题意而定),pre[15]=3就表示15号大侠的上级是3号大侠。如果一个人的上级就是他自己,那说明他就是掌门人了,查找到此为止。也有孤家寡人自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛同学只知道自己的上级是杨左使。张无忌是谁?不认识!要想知道自己的掌门是谁,只能一级级查上去。 find这个函数就是找掌门用的,意义再清楚不过了(路径压缩算法先不论,后面再说)。


int find(int x)                                                                  //查找我(x)的掌门

{

    int r=x;                                                                       //委托 r 去找掌门

    while (pre[r ]!=r)                                                        //如果r的上级不是r自己(也就是说找到的大侠他不是掌门 = =)

    r=pre[r ] ;                                                                   // r 就接着找他的上级,直到找到掌门为止。

    return  r ;                                                                   //掌门驾到~~~

}

        再来看看join函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个板块的所有点就都可以互通了。这在图上很好办,画条线就行了。但我们现在是用并查集来描述武林中的状况的,一共只有一个pre[]数组,该如何实现呢? 还是举江湖的例子,假设现在武林中的形势如图所示。虚竹小和尚与周芷若MM是我非常喜欢的两个人物,他们的终极boss分别是玄慈方丈和灭绝师太,那明显就是两个阵营了。我不希望他们互相打架,就对他俩说:“你们两位拉拉勾,做好朋友吧。”他们看在我的面子上,同意了。这一同意可非同小可,整个少林和峨眉派的人就不能打架了。这么重大的变化,可如何实现呀,要改动多少地方?其实非常简单,我对玄慈方丈说:“大师,麻烦你把你的上级改为灭绝师太吧。这样一来,两派原先的所有人员的终极boss都是师太,那还打个球啊!反正我们关心的只是连通性,门派内部的结构不要紧的。”玄慈一听肯定火大了:“我靠,凭什么是我变成她手下呀,怎么不反过来?我抗议!”抗议无效,上天安排的,最大。反正谁加入谁效果是一样的,我就随手指定了一个。这段函数的意思很明白了吧?

void join(int x,int y)                                                                   //我想让虚竹和周芷若做朋友

{

    int fx=find(x),fy=find(y);                                                       //虚竹的老大是玄慈,芷若MM的老大是灭绝

    if(fx!=fy)                                                                               //玄慈和灭绝显然不是同一个人

    pre[fx ]=fy;                                                                           //方丈只好委委屈屈地当了师太的手下啦

}

        再来看看路径压缩算法。建立门派的过程是用join函数两个人两个人地连接起来的,谁当谁的手下完全随机。最后的树状结构会变成什么胎唇样,我也完全无法预计,一字长蛇阵也有可能。这样查找的效率就会比较低下。最理想的情况就是所有人的直接上级都是掌门,一共就两级结构,只要找一次就找到掌门了。哪怕不能完全做到,也最好尽量接近。这样就产生了路径压缩算法。 设想这样一个场景:两个互不相识的大侠碰面了,想知道能不能揍。 于是赶紧打电话问自己的上级:“你是不是掌门?” 上级说:“我不是呀,我的上级是谁谁谁,你问问他看看。” 一路问下去,原来两人的最终boss都是东厂曹公公。 “哎呀呀,原来是记己人,西礼西礼,在下三营六组白面葫芦娃!” “幸会幸会,在下九营十八组仙子狗尾巴花!” 两人高高兴兴地手拉手喝酒去了。 “等等等等,两位同学请留步,还有事情没完成呢!”我叫住他俩。 “哦,对了,还要做路径压缩。”两人醒悟。 白面葫芦娃打电话给他的上级六组长:“组长啊,我查过了,其习偶们的掌门是曹公公。不如偶们一起及接拜在曹公公手下吧,省得级别太低,以后查找掌门麻环。” “唔,有道理。” 白面葫芦娃接着打电话给刚才拜访过的三营长……仙子狗尾巴花也做了同样的事情。 这样,查询中所有涉及到的人物都聚集在曹公公的直接领导下。每次查询都做了优化处理,所以整个门派树的层数都会维持在比较低的水平上。路径压缩的代码,看得懂很好,看不懂也没关系,直接抄上用就行了。总之它所实现的功能就是这么个意思。



畅通工程

                            Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
                                                Total Submission(s): 62324    Accepted Submission(s): 33363

Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路? 
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。 
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。 
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。 
Sample Input
 
 
4 21 34 33 31 21 32 35 21 23 5999 00
Sample Output
 
 
102998


代码实现:

#include <algorithm>
#include <cstring>
#include <iostream>
#include <cstdio>
#include <string>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <iostream>
using namespace std;
 int pre[1000 ];
int find(int x)
{
    int r=x;
   while (pre[r ]!=r)
   r=pre[r ];
   int i=x; int j;
   while(i!=r)
   {
       j=pre[i ];
       pre[i ]=r;
       i=j;
   }
   return r;
}
int main()
{
   int n,m,p1,p2,i,total,f1,f2;
   while(scanf("%d",&n) && n)         //读入n,如果n为0,结束
   {                                                    //刚开始的时候,有n个城镇,一条路都没有 //那么要修n-1条路才能把它们连起来
       total=n-1;
       //每个点互相独立,自成一个集合,从1编号到n //所以每个点的上级都是自己
       for(i=1;i<=n;i++) { pre[i ]=i; }                //共有m条路
       scanf("%d",&m); while(m--)
       { //下面这段代码,其实就是join函数,只是稍作改动以适应题目要求
           //每读入一条路,看它的端点p1,p2是否已经在一个连通分支里了
           scanf("%d %d",&p1,&p2);
           f1=find(p1);
           f2=find(p2);
               //如果是不连通的,那么把这两个分支连起来
               //分支的总数就减少了1,还需建的路也就减了1
           if(f1!=f2)
            {
               pre[f2 ]=f1;
               total--;
           }
           //如果两点已经连通了,那么这条路只是在图上增加了一个环 //对连通性没有任何影响,无视掉
       }
//最后输出还要修的路条数
       printf("%d\n",total);
   }
   return 0;
}

小希的迷宫

                                       Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
                                                    Total Submission(s): 58832    Accepted Submission(s): 18516

Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。 

Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。 
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
 
 
6 8 5 3 5 2 6 45 6 0 08 1 7 3 6 2 8 9 7 57 4 7 8 7 6 0 03 8 6 8 6 45 3 5 6 5 2 0 0-1 -1
 
Sample Output
 
 
YesYesNo

这道并查集的题目与其他题目相比,有几个要注意地方:
1.房间编号并不是1—n,有些数字并没有出现,所以要用一个数组标记数字是否出现;
2.如果查找到输入的两个数字的根节点相同,说明它们已经连通了,再加一条边就有多条相通的路径,用FLAG记录是否有多条相通路径;
3.要判断所有房间是不是属于同一个集合。

//flag[i]数组标记i是否出现,FLAG标记是否有环,sum记录集合的个数  
#include<stdio.h>  
const int N = 100005;  
int flag[N], father[N];  
void Init()  
{  
    for(int i = 0; i <= 100000; i++)  
        flag[i] = 0, father[i] = i;  
}  
int Find(int x)  
{  
    if(x != father[x])  
        father[x] = Find(father[x]);  
    return father[x];  
}  
void Merge(int a, int b)  
{  
    int p = Find(a);  
    int q = Find(b);  
    if(p > q)  
        father[p] = q;  
    else  
        father[q] = p;  
}  
int main()  
{  
    int a, b;  
    while(~scanf("%d%d",&a,&b))  
    {  
  
        if(a == -1 && b == -1)  
            break;  
        Init();  
        int FLAG = 0;  
        while(1)  
        {  
            if(a == 0 && b == 0)  
                break;  
            if(Find(a) == Find(b))  
                FLAG = 1;  
            Merge(a,b);  
            flag[a] = 1, flag[b] = 1;  
            scanf("%d%d",&a,&b);  
        }  
        if(FLAG == 1)  
            printf("No\n");  
        else  
        {  
            int sum = 0;  
            for(int i = 0; i <= 100000; i++)  
                if(flag[i] && father[i] == i)  
                    sum++;  
            if(sum > 1)  
                printf("No\n");  
            else  
                printf("Yes\n");  
        }  
    }  
    return 0;  
}  

最小生成树

1.什么是——生成树?

2.什么是——最小生成树?


3、如何求——最小生成树?

A)Prim 算法(比较麻烦,有兴趣自己了解)

B)Kruskal算法

4、Kruskal算法步骤:


克鲁斯卡尔算法图解

假设,用数组R保存最小生成树结果

第1步:将边<E,F>加入R中。 
    边<E,F>的权值最小,因此将它加入到最小生成树结果R中。 
第2步:将边<C,D>加入R中。 
    上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。 
第3步:将边<D,E>加入R中。 
    上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。 
第4步:将边<B,F>加入R中。 
    上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。 
第5步:将边<E,G>加入R中。 
    上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。 
第6步:将边<A,B>加入R中。 
    上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。

此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>

克鲁斯卡尔算法分析

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题: 
问题一 对图的所有边按照权值大小进行排序。 
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。

问题一很好解决,采用排序算法进行排序即可。

问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"(关于这一点,后面会通过图片给出说明)。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。 以下图来进行说明:

在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:

(01) C的终点是F。 
(02) D的终点是F。 
(03) E的终点是F。 
(04) F的终点是F。

关于终点,就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。 因此,接下来,虽然<C,E>是权值最小的边。但是C和E的重点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。

1. 基本定义

复制代码
// 邻接矩阵
typedef struct _graph
{
    char vexs[MAX];       // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

// 边的结构体
typedef struct _EdgeData
{
    char start; // 边的起点
    char end;   // 边的终点
    int weight; // 边的权重
}EData;
复制代码

Graph是邻接矩阵对应的结构体。 
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。 
EData是邻接矩阵边对应的结构体。

2. 克鲁斯卡尔算法

复制代码
/*
 * 克鲁斯卡尔(Kruskal)最小生成树
 */
void kruskal(Graph G)
{
    int i,m,n,p1,p2;
    int length;
    int index = 0;          // rets数组的索引
    int vends[MAX]={0};     // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
    EData rets[MAX];        // 结果数组,保存kruskal最小生成树的边
    EData *edges;           // 图对应的所有边

    // 获取"图中所有的边"
    edges = get_edges(G);
    // 将边按照"权"的大小进行排序(从小到大)
    sorted_edges(edges, G.edgnum);

    for (i=0; i<G.edgnum; i++)
    {
        p1 = get_position(G, edges[i].start);   // 获取第i条边的"起点"的序号
        p2 = get_position(G, edges[i].end);     // 获取第i条边的"终点"的序号

        m = get_end(vends, p1);                 // 获取p1在"已有的最小生成树"中的终点
        n = get_end(vends, p2);                 // 获取p2在"已有的最小生成树"中的终点
        // 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
        if (m != n)
        {
            vends[m] = n;                       // 设置m在"已有的最小生成树"中的终点为n
            rets[index++] = edges[i];           // 保存结果
        }
    }
    free(edges);

    // 统计并打印"kruskal最小生成树"的信息
    length = 0;
    for (i = 0; i < index; i++)
        length += rets[i].weight;
    printf("Kruskal=%d: ", length);
    for (i = 0; i < index; i++)
        printf("(%c,%c) ", rets[i].start, rets[i].end);
    printf("\n");
}













评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值