深入理解Spring Redis的使用 (九)、通过Redis 实现 分布式锁 的 BUG,以及和数据库加锁的性能测试

原文:深入理解Spring Redis的使用 (九)、通过Redis 实现 分布式锁 的 BUG,以及和数据库加锁的性能测试

在多节点的项目中,经常要涉及到某些方法加锁的控制。而这个时候,简单易用的synchronized已经不能满足多节点的部署结构。

之前在项目中,用的比较多的是数据库的更新锁:for udpate。但是这个有个缺点,就是对于本来就容易出现瓶颈的数据库,造成了更大的压力。同时,如果是锁表的语句,同时表数据量特别大,基本服务器直接宕机了。

所以,决定绕开数据库,直接使用Redis来实现分布式锁。查了下资料,找到一些文章,思路都一致:

http://www.jeffkit.info/2011/07/1000/

http://my.oschina.net/u/1995545/blog/366381

于是参考文章,通过Spring aop注解方法来实现对方法的多节点加锁。

 

之前的文章给了实现的代码。并没有什么难度,注解+AOP。

但是今天做压力测试的时候,发现这个大有问题。

 

测试环境:

1000线程,每个线程执行1次。(这种更接近真实的tomcat环境)

 

sleep时间和执行时间:

* 20ms 约等于cpu线程切换时间,59998
* 50ms 43177
* 100ms 20555
* 150ms 7014 
* 200ms 2970 性能尚可

但是,如果设置200ms,有可能有些线程,从最开始阻塞不断sleep,到最后全部结束了,才拿到锁。如果程序不结束,那么该线程就一直堵死,无法预料究竟多久能拿到锁。如果去设置等待多久超时断开,那么频繁的失败,对于用户肯定是无法接受的。

于是又测试数据库的锁

一张70W数据的表,

通过pk行级锁,执行时间1163(需要被锁数据存在的情况下,才能加上对应的锁),而且如果是每个线程都是各自的数据行的话,相互不阻塞会更快.(SSD固态硬盘。。。)

通过其他列表锁,一秒执行一次的感觉,直接卡死,停止测试

 

所以,通过sleep来等待,并发高的情况下,将会导致某些线程失控。

但是wait notify,又是针对单节点下才能使用。

 

也可以做到最细粒度,然后再用redis加锁,这样,降低线程堵死的可能性。

 

总结:

要么使用阻塞的方式来调度线程,

要么就实现一个可以在分布式环境下的类似NIO的reactor模式来进行调度。

保证先入先出,即使有些慢的状态下,不至于先来的反而堵死,造成差的体验。

或者为每个请求设置超时时间,超时抛出异常。

 

 


已标记关键词 清除标记
相关推荐
课程简介: 历经半个多月的时间,Debug亲自撸的 “企业员工角色权限管理平台” 终于完成了。正如字面意思,本课程讲解的是一个真正意义上的、企业级的项目实战,主要介绍了企业级应用系统中后端应用权限的管理,其中主要涵盖了六大核心业务模块、十几张数据库表。 其中的核心业务模块主要包括用户模块、部门模块、岗位模块、角色模块、菜单模块和系统日志模块;与此同时,Debug还亲自撸了额外的附属模块,包括字典管理模块、商品分类模块以及考勤管理模块等等,主要是为了更好地巩固相应的技术栈以及企业应用系统业务模块的开发流程! 核心技术栈列表: 值得介绍的是,本课程在技术栈层面涵盖了前端和后端的大部分常用技术,包括Spring Boot、Spring MVC、Mybatis、Mybatis-Plus、Shiro(身份认证与资源授权跟会话等等)、Spring AOP、防止XSS攻击、防止SQL注入攻击、过滤器Filter、验证码Kaptcha、热部署插件Devtools、POI、Vue、LayUI、ElementUI、JQuery、HTML、Bootstrap、Freemarker、一键打包部署运行工具Wagon等等,如下图所示: 课程内容与收益: 总的来说,本课程是一门具有很强实践性质的“项目实战”课程,即“企业应用员工角色权限管理平台”,主要介绍了当前企业级应用系统中员工、部门、岗位、角色、权限、菜单以及其他实体模块的管理;其中,还重点讲解了如何基于Shiro的资源授权实现员工-角色-操作权限、员工-角色-数据权限的管理;在课程的最后,还介绍了如何实现一键打包上传部署运行项目等等。如下图所示为本权限管理平台的数据库设计图: 以下为项目整体的运行效果截图: 值得一提的是,在本课程中,Debug也向各位小伙伴介绍了如何在企业级应用系统业务模块的开发中,前端到后端再到数据库,最后再到服务器的上线部署运行等流程,如下图所示:
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页