希尔排序实质上是一种分组插入方法。
它的基本思想是:
对于n个待排序的数列,取一个小于n的整数gap(gap被称为步长)将待排序元素分成若干个组子序列,所有距离为gap的倍数的记录放在同一个组中;
然后,对各组内的元素进行直接插入排序。 这一趟排序完成之后,每一个组的元素都是有序的。
然后减小gap的值,并重复执行上述的分组和排序。重复这样的操作,当gap=1时,整个数列就是有序的。
由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。
下面以数列{80,30,60,40,20,10,50,70}为例,演示它的希尔排序过程。
希尔排序
public static void shellSort(int[] a, int n) {
int i, j, k, gap;
// gap为步长,每次减为原来的一半。
for (gap = n / 2; gap > 0; gap /= 2) {
// 共gap个组,对每一组都执行直接插入排序
for (i = 0; i < gap; i++) {
for (j = gap + i; j < n; j += gap) {
// 如果a[j] < a[j-gap],则寻找a[j]位置,并将后面数据的位置都后移。
if (a[j] < a[j - gap]) {
int tmp = a[j];
for (k = j - gap; k >= 0 && a[k] > tmp; k -= gap) {
a[k + gap] = a[k];
}
a[k + gap] = tmp;
}
}
}
}
}
直接插入排序
public static void shellSort2(int[] a) {
for (int j = 1; j < a.length; j++) {
if (a[j] < a[j - 1]) {
int tmp = a[j];
int k;
for (k = j - 1; k >= 0 && a[k] > tmp; k--) {
a[k + 1] = a[k];
}
a[k + 1] = tmp;
}
}
}
希尔排序是插入排序的升级版