机器学习---数学基础(一、微积分)

  • 微积分的核心思想:逼近

1、极限

  • 引理1:单调有界序列存在极限。

1.1 无穷大之比较

ln ⁡ n < n 1 a 1 < n < n a 2 < a 3 n < n ! < n n , 其 中 a 1 , a 2 , a 3 都 是 大 于 1 的 值 。 \ln n < n^{\frac{1}{a_1}} < n < n^{a_2} < {a_3}^n < n! < n^n, \qquad 其中 a_1,a_2,a_3 都是大于 1 的值。 lnn<na11<n<na2<a3n<n!<nn,a1,a2,a31

1.1.1 求证 lim ⁡ x → ∞ n a 1 a 2 n = 0 {\lim \limits_{x \to \infty}} \frac{n^{a_1}}{{a_2}^n} = 0 xlima2nna1=0

  • 证明:用二项式展开进行计算。
  1. h = a 2 − 1 h = a_2 -1 h=a21
  2. 则: a 2 n = ( 1 + h ) n = 1 + n ∗ h + n ( n − 1 ) 2 ! ∗ h + n ( n − 1 ) ( n − 2 ) 3 ! ∗ h 2 + . . . a_2^n = (1+h)^n \\ =1 + n*h + \frac{n(n-1)}{2!}*h + \frac{n(n-1)(n-2)}{3!}*h^2 + ... a2n=(1+h)n=1+nh+2!n(n1)h+3!n(n1)(n2)h2+...
  3. k = [ a 1 ] + 1 k = [a_1] + 1 k=[a1]+1 ; (先对 a 1 a_1 a1取整再加 1)
  4. 则,在 a 2 n {a_2}^n a2n中,一定存在 n ( n − 1 ) ( n − 2 ) . . . ( n − ( k − 1 ) ) k ! \frac{n(n-1)(n-2)...(n-(k-1))}{k!} k!n(n1)(n2)...(n(k1))
  5. 最后经过同比例放缩,得到
    0 < n a 1 a 2 n ≤ n k n ( n − 1 ) ( n − 2 ) . . . ( n − ( k − 1 ) ) k ! h k 0<\frac{n^{a_1}}{{a_2}^n} \leq \frac{n^k}{\frac{n(n-1)(n-2)...(n-(k-1))}{k!} h^{k}} 0<a2nna1k!n(n1)(n2)...(n(k1))hknk

1.1.2 求证 a n < n ! 其 中 a > 1 a^n <n! \quad 其中 a > 1 an<n!a>1

  • 证明: 直接相比,然后进行放缩。
  • 0 < a n n ! ≤ C a n → 0 0 < \frac{a^n}{n!} \leq C\frac{a}{n} \to 0 0<n!anCna0

1.2 无穷小之比较

  • 与无穷大的比较正好相反
  • 1 n n < 1 n ! < 1 a 3 n < 1 n a 2 < 1 n < 1 n 1 a 1 < 1 ln ⁡ n \frac{1}{n^n} < \frac{1}{n!} < \frac{1}{{a_3}^n} < \frac{1}{n^{a_2}} <\frac{1}{n} < \frac{1}{n^{\frac{1}{a_1}}} <\frac{1}{\ln n} nn1<n!1<a3n1<na21<n1<na111<lnn1

1.2.1 求证 1 n \frac{1}{n} n1 发散

1 ⏟ ≥ 1 2 + 1 2 ⏟ ≥ 1 2 + 1 3 + 1 4 ⏟ ≥ 1 2 + 1 5 + 1 6 + 1 7 + 1 8 ⏟ ≥ 1 2 \underbrace{\mathop{1}}_{\geq \frac{1}{2}} + \underbrace{\mathop{\frac{1}{2}}}_{\geq \frac{1}{2}} + \underbrace{\mathop{\frac{1}{3} + \frac{1}{4}}}_{\geq \frac{1}{2}} + \underbrace{\mathop{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}}_{\geq \frac{1}{2}} 21 1+21 21+21 31+41+21 51+61+71+81

  • 可以看成是无数了 ≥ 1 2 \geq \frac{1}{2} 21 的数进行叠加
  • 所以是发散的。

1.2.2 求证 1 n a \frac{1}{n^a} na1 收敛, a > 1

1 1 n ⏟ + 1 2 n + 1 3 n ⏟ + 1 4 n + 1 5 n 1 6 n + 1 7 n ⏟ + . . . \underbrace{\mathop{\frac{1}{1^n}}} + \underbrace{\mathop{\frac{1}{2^n} + \frac{1}{3^n}}} + \underbrace{\mathop{\frac{1}{4^n} + \frac{1}{5^n}\frac{1}{6^n} + \frac{1}{7^n}}}+... 1n1+ 2n1+3n1+ 4n1+5n16n1+7n1+...

  • 1 ( 2 n ) a + . . . + 1 ( 2 n + 1 − 1 ) a < 2 n ( 2 n ) a \frac{1}{(2^n)^a} +...+\frac{1}{(2^{n+1} -1)^a} < \frac{2^n}{(2^n)^a} (2n)a1+...+(2n+11)a1<(2n)a2n
  • 2 n ( 2 n ) a = 1 ( 2 n ) a − 1 = 1 2 a − 1 n \frac{2^n}{(2^n)^a} = \frac{1}{(2^n)^{a-1}} = {\frac{1}{2^{a-1}}}^n (2n)a2n=(2n)a11=2a11n
  • 因为 a>1,所以,令, 1 2 a − 1 = w ,    w < 1 \frac{1}{2^{a-1}}=w, \ \ w<1 2a11=w,  w<1
  • 所以, 原 式 < w n 原式 < w^n <wn
  • ∑ w n = 1 1 − w \sum w^n = \frac{1}{1-w} wn=1w1
  • 所以,上式收敛。

补充知识:
等比数列的求和公式为: a 1 ( 1 − q n ) 1 − q , q 不 等 于 1 \frac{a_1(1-q^n)}{1-q},\quad q不等于1 1qa1(1qn),q1

1.3 极限的定义

  • 极限定义的记忆方式:想要任意近,就要足够近。

在这里插入图片描述
{ 对 于 任 意 的 正 数 ϵ , 若 使 得 ∣ f ( x ) − L ∣ < ϵ ; 则 存 在 δ , 使 得 ∣ x − x 0 ∣ < δ \begin{cases} 对于任意的正数 \epsilon, \\ 若使得 |f(x) - L| < \epsilon; \\ 则存在\delta,使得|x-x_0| < \delta \end{cases} ϵ,使f(x)L<ϵ;δ,使xx0<δ

  • 极限的数学符号:
    在这里插入图片描述

1.4 极限的运算

1.4.1 极限的四则运算

  • 加法
    lim ⁡ x → x 0 f ( x ) = L 1 \lim \limits_{x \to x_0} f(x) = L_1 xx0limf(x)=L1; lim ⁡ x → x 0 g ( x ) = L 2 \lim \limits_{x \to x_0} g(x) = L_2 xx0limg(x)=L2
    则存在, lim ⁡ x → x 0 f ( x ) + g ( x ) = L 1 + L 2 \lim \limits_{x \to x_0} f(x)+g(x) = L_1 + L_2 xx0limf(x)+g(x)=L1+L2

1.4.2 极限的复合运算

lim ⁡ x → x 0 f ( x ) = L 1 \lim \limits_{x \to x_0} f(x) = L_1 xx0limf(x)=L1; lim ⁡ x → L 1 g ( x ) = L 2 \lim \limits_{x \to L_1} g(x) = L_2 xL1limg(x)=L2
则存在, lim ⁡ x → x 0 g ( f ( x ) ) = L 2 \lim \limits_{x \to x_0} g(f(x)) = L_2 xx0limg(f(x))=L2

1.4.3 两个重要极限

lim ⁡ x → ∞ ( 1 + 1 n ) n = e \lim \limits_{x \to \infty} (1 + \frac{1}{n})^n = e xlim(1+n1)n=e
lim ⁡ x → 0 s i n x x = 1 → 与 正 弦 有 关 的 函 数 会 用 到 \lim_{x \to 0 }\frac{sinx}{x} = 1 \rightarrow 与正弦有关的函数会用到 x0limxsinx=1

  • (1) 证明: ( 1 + 1 n ) n (1 + \frac{1}{n})^n (1+n1)n 有界
    • 二项展开
    • 1 ⏟ ≤ 1 + n ∗ 1 n ⏟ ≤ 1 + n ( n − 1 ) 2 ! 1 n 2 + n ( n − 1 ) ( n − 2 ) 3 ! 1 n 3 + n ( n − 1 ) ( n − 2 ) ( n − 3 ) 4 ! 1 n 4 + . . . ⏟ ≤ 1 \underbrace{1}_{\leq 1}+\underbrace{n*\frac{1}{n}}_{\leq 1} + \underbrace{\frac{n(n-1)}{2!}\frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!}\frac{1}{n^3} + \frac{n(n-1)(n-2)(n-3)}{4!}\frac{1}{n^4} + ...}_{\leq 1} 1 1+1 nn1+1 2!n(n1)n21+3!n(n1)(n2)n31+4!n(n1)(n2)(n3)n41+...
    • 所以 ( 1 + 1 n ) n ≤ 3 (1 + \frac{1}{n})^n \leq 3 (1+n1)n3
    • ( 1 + 1 n ) n = 1 + n ∗ 1 n + n ( n − 1 ) 2 ! 1 n 2 + n ( n − 1 ) ( n − 2 ) 3 ! 1 n 3 + n ( n − 1 ) ( n − 2 ) ( n − 3 ) 4 ! 1 n 4 + . . . ≤ 1 + 1 + 1 1 ∗ 2 + 1 2 ∗ 3 + 1 3 ∗ 4 + . . . = 1 + 1 + 1 − 1 2 + 1 2 − 1 3 + 1 3 − 1 4 + . . . = 1 + 1 + 1 − 1 n ≤ 3 (1 + \frac{1}{n})^n ={1}+{n*\frac{1}{n}} + {\frac{n(n-1)}{2!}\frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!}\frac{1}{n^3} + \frac{n(n-1)(n-2)(n-3)}{4!}\frac{1}{n^4} + ...} \\ \leq 1+ 1+ \frac{1}{1*2} + \frac{1}{2*3} + \frac{1}{3*4} + ... \\ = 1+ 1 + 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3}+ \frac{1}{3} - \frac{1}{4} +... \\ = 1+ 1 + 1 - \frac{1}{n} \leq 3 (1+n1)n=1+nn1+2!n(n1)n21+3!n(n1)(n2)n31+4!n(n1)(n2)(n3)n41+...1+1+121+231+341+...=1+1+121+2131+3141+...=1+1+1n13
  • (2) 证明: ( 1 + 1 n ) n (1 + \frac{1}{n})^n (1+n1)n 单调递增,即 ( 1 + 1 n ) n < ( 1 + 1 n + 1 ) n + 1 (1 + \frac{1}{n})^n < (1 + \frac{1}{n+1})^{n+1} (1+n1)n<(1+n+11)n+1
    • 也是用二项展开来证明,和上式一样。

1.4.4 夹逼定理

lim ⁡ x → x 0 f ( x ) = L \lim \limits_{x \to x_0} f(x) = L xx0limf(x)=L; lim ⁡ x → x 0 g ( x ) = L \lim \limits_{x \to x_0} g(x) = L xx0limg(x)=L
且在 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)内, x 1 < x 0 < x 2 x_1< x_0 < x_2 x1<x0<x2,有 f ( x ) ≤ k ( x ) ≤ g ( x ) → lim ⁡ x → x 0 k ( x ) = L f(x) \leq k(x) \leq g(x) \rightarrow \lim \limits_{x \to x_0}k(x) = L f(x)k(x)g(x)xx0limk(x)=L

在这里插入图片描述

1.5 无穷小阶数

  • 趋近无穷小的速度越快,阶数越大
    趋近··················越慢,······越小
    在这里插入图片描述

1.5.1 等价无穷小代还求极限

在这里插入图片描述

2、微分与泰勒级数

2.1 微分

2.1.1 导数

  • 几何定义:函数的切线。
    在这里插入图片描述

2.1.2 求导法则

在这里插入图片描述

2.1.3 反函数求导

  • 定义:
    x → y = f ( x ) , 其 中 x 为 自 变 量 , y 为 因 变 量 , f ′ = lim ⁡ Δ y Δ x 反 函 数 可 以 表 示 为 y → x = g ( y ) , 其 中 y 为 自 变 量 , x 为 因 变 量 , g ′ = lim ⁡ Δ x Δ y x \rightarrow y = f(x),其中x为自变量,y为因变量,f^{'} =\lim \frac{\Delta y}{\Delta x}\\ 反函数可以表示为 y \rightarrow x = g(y),其中y为自变量,x为因变量,g^{'} =\lim \frac{\Delta x}{\Delta y} xy=f(x),xyf=limΔxΔyyx=g(y),yxg=limΔyΔx
    并且满足 f ′ ( x ) ∗ g ′ ( y ) = 1 f^{'}(x) * g^{'}(y) = 1 f(x)g(y)=1

  • 举个例子:

    • 求: a r c s i n ′ x arc sin^{'}x arcsinx
      • y = a r c s i n ( x ) ; x = s i n ( y ) y = arc sin(x); x = sin(y) y=arcsin(x);x=sin(y)
      • y ′ = a r c s i n ′ ( x ) = 1 s i n ′ ( y ) = 1 c o s ( a r c s i n ( x ) ) = 1 1 − x 2 y^{'} = arc sin^{'}(x)=\frac{1}{sin^{'}(y)} = \frac{1}{cos(arc sin(x))} = \frac{1}{\sqrt{1-x^2}} y=arcsin(x)=sin(y)1=cos(arcsin(x))1=1x2 1

2.1.4 复合函数的导数

  • 定义:
    g ′ ( f ( x ) ) = g ′ ( f ( x ) ) ∗ f ′ ( x ) g^{'}(f(x)) = g^{'}(f(x))*f^{'}(x) g(f(x))=g(f(x))f(x)

  • 举个例子:

    • ( x x ) ′ (x^x)^{'} (xx)
      • 解析: k = e l n k k = e^{lnk} k=elnk
      • ( x x ) ′ = ( e l n x x ) ′ = ( e x l n x ) ′ (x^x)^{'}=(e^{lnx^x})^{'} = (e^{x lnx})^{'} (xx)=(elnxx)=(exlnx) 由此变成 复合函数。

2.2 泰勒级数

在这里插入图片描述

2.2.1 罗尔定理

  1. 定义
    y = f ( x ) y=f(x) y=f(x) 在区间 [ a , b ] [a,b] [a,b]内可导,且 f ( a ) = f ( b ) f(a) = f(b) f(a)=f(b),则一定存在 c ∈ ( a , b ) c \in(a,b) c(a,b) 使得 f ′ ( c ) = 0 f^{'}(c) = 0 f(c)=0

2.2.1 微分中值定理和柯西中值定理

  1. 微分中值定理定义
    y = f ( x ) y=f(x) y=f(x) 在区间 [ a , b ] [a,b] [a,b]内可导,则一定存在 c ∈ ( a , b ) c \in(a,b) c(a,b) 使得 f ′ ( c ) = f ( b ) − f ( a ) b − a f^{'}(c) = \frac{f(b) - f(a)}{b - a} f(c)=baf(b)f(a)

  2. 柯西中值定理定义
    f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 在区间 [ a , b ] [a,b] [a,b]内可导,且 g ( b ) ≠ g ( a ) g(b) \neq g(a) g(b)=g(a)【即,分母不为0】,则一定存在 c ∈ ( a , b ) c \in(a,b) c(a,b) 使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( c ) g ′ ( c ) \frac{f(b) - f(a)}{g(b) - g(a)}= \frac{f^{'}(c)}{g^{'}(c)} g(b)g(a)f(b)f(a)=g(c)f(c)

2.2.3 洛必达法则

  • 用处
    用于判断 0 0 ; ∞ ∞ \frac{0}{0};\frac{\infty}{\infty} 00;的情况
  1. 定义
    lim ⁡ x → a f ( x ) = 0 , lim ⁡ x → a g ( x ) = 0 \lim \limits_{x \to a}f(x) = 0, \lim \limits_{x \to a}g(x) = 0 xalimf(x)=0,xalimg(x)=0,且满足f(x),g(x)在 a 点 空心邻域可导,则: lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( a ) g ′ ( a ) \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f^{'}(a)}{g^{'}(a)} xalimg(x)f(x)=xalimg(a)f(a)

2.2.4 泰勒展开的证明

  • 带尾项的证明
    f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + O ( x − x 0 ) 2 , 其 中 x = x 0 + Δ x f(x) = f(x_0) + f^{'}(x_0)(x - x_0) + \frac{f^{''}(x_0)}{2!}(x - x_0)^2 + O(x - x_0)^2, 其中x= x_0 + \Delta x f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2+O(xx0)2,x=x0+Δx

  • 可以直接使用洛必达法则直接证明。

  • e x e^x ex 在0点处的泰勒展开
    e x = 1 + x + x 2 2 ! + x 3 3 ! + . . . e^x = 1+ x + \frac{x^2}{2!} + \frac{x^3}{3!}+... ex=1+x+2!x2+3!x3+...

  • s i n ( x ) sin(x) sin(x) 在0点处的泰勒展开
    s i n ( x ) = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + . . . sin(x) = x - \frac{x^3}{3!}+ \frac{x^5}{5!} - \frac{x^7}{7!} +... sin(x)=x3!x3+5!x57!x7+...

  • c o s ( x ) cos(x) cos(x) 在0点处的泰勒展开
    c o s ( x ) = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + . . cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} +.. cos(x)=12!x2+4!x46!x6+..

2.3 偏导数

∂ f ( a , b ) ∂ a = lim ⁡ Δ a → 0 f ( a + Δ a , b ) − f ( a , b ) Δ a \frac{\partial f(a,b)}{\partial a} = \lim \limits_{\Delta a \to 0}\frac{f(a+\Delta a, b) - f(a,b)}{\Delta a} af(a,b)=Δa0limΔaf(a+Δa,b)f(a,b)

  • 对称性
    ∂ ∂ f ∂ a ∂ b = ∂ ∂ f ∂ b ∂ a \qquad \frac{\partial \frac{\partial f}{\partial a}}{\partial b} = \frac{\partial \frac{\partial f}{\partial b}}{\partial a} baf=abf
    上 式 = ∂ 2 f ∂ a ∂ b \\ \qquad上式= \frac{\partial ^2f}{\partial a \partial b} =ab2f

2.3.1 链式求导法则

  • 已知: f ( u , v ) , u ( x , y ) , v ( x , y ) f(u,v), u(x,y), v(x,y) f(u,v),u(x,y),v(x,y)
  • 则,可以得到 ∂ f ∂ x = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x \frac{\partial f}{\partial x} = \frac{\partial f}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial x} xf=ufxu+vfxv

2.3.2 梯度算符、拉氏算符

  • 梯度运算符
    Δ ⃗ = { ∂ ∂ x , ∂ ∂ y , ∂ ∂ z } \vec{\Delta} = \{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \} Δ ={x,y,z}

  • 拉普拉斯运算符
    Δ ⃗ Δ ⃗ = ∂ 2 ∂ 2 x + ∂ 2 ∂ 2 y + ∂ 2 ∂ 2 z \vec{\Delta} \vec{\Delta}= \frac{\partial ^2}{\partial ^2 x}+ \frac{\partial ^2}{\partial ^2 y}+ \frac{\partial ^2}{\partial ^2 z} Δ Δ =2x2+2y2+2z2

    • 重要性质:
      任意坐标下,拉氏算符不变。
      极 坐 标 下 拉 氏 运 算 符 ( x , y ) → ( r , θ ) ( ∂ z ∂ r ) 2 + 1 r 2 ( ∂ z ∂ θ ) 2 = ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 极坐标下拉氏运算符 (x,y) \rightarrow (r, \theta)\\ (\frac{\partial z}{\partial r})^2 + \frac{1}{r^2}(\frac{\partial z}{\partial \theta})^2 = (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 (x,y)(r,θ)(rz)2+r21(θz)2=(xz)2+(yz)2

3、积分与微积分基本定理

在这里插入图片描述

  • 几何定义:函数与 X X X轴之间的有向面积。
  • 代数定义:无穷求和。

在这里插入图片描述

3.0 积分计算方式 → \rightarrow 变量替换

3.1 积分计算方式 → \rightarrow 分部积分

  • 定义:
    已知, f ( x ) , g ( x ) f(x), g(x) f(x),g(x)
    则, f ( x ) g ( x ) + c = ∫ f ( x ) g ′ ( x ) d x + ∫ g ( x ) f ′ ( x ) d x = ∫ f ( x ) d g ( x ) + ∫ g ( x ) d f ( x ) f(x)g(x) + c = \int f(x)g^{'}(x) dx + \int g(x)f^{'}(x) dx \\ = \int f(x)dg(x) + \int g(x)df(x) f(x)g(x)+c=f(x)g(x)dx+g(x)f(x)dx=f(x)dg(x)+g(x)df(x)

  • 举个例子

    • ∫ x 2 e x d x = ∫ x 2 d e x = x 2 d e x − ∫ e x d x 2 \int x^2 e^x dx = \int x^2 de^x = x^2 de^x -\int e^x dx^2 x2exdx=x2dex=x2dexexdx2

4、牛顿法

  • 对于机器学习或统计算法的最后都会转换成一个优化的问题。
    也就是:求某一个损失函数的极小值。
    在这里插入图片描述

1)注意事项(局限性)

在这里插入图片描述

2)具体做法

  • 本质是:二次逼近
    在这里插入图片描述

5、 正态分布

5.1 标准的正态分布

∫ − ∞ + ∞ e − x 2 d x = π \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi} +ex2dx=π

  • 具体计算过程如下所示:
    ∫ − ∞ + ∞ e − x 2 d x ∫ − ∞ + ∞ e − y 2 d y = ∫ − ∞ + ∞ ∫ − ∞ + ∞ e − ( x 2 + y 2 ) d x d y = ∫ 0 2 π ∫ 0 + ∞ e − r 2 r d r d θ = ∫ 0 2 π d θ ∫ 0 + ∞ e − r 2 r d r = π \int_{-\infty}^{+\infty} e^{-x^2} dx\int_{-\infty}^{+\infty} e^{-y^2} dy =\\ \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} e^{-(x^2 + y^2)} dxdy= \\ \int_{0}^{2\pi}\int_{0}^{+\infty} e^{-r^2} r dr d\theta = \\ \int_{0}^{2\pi} d\theta \int_{0}^{+\infty} e^{-r^2} r dr = \pi +ex2dx+ey2dy=++e(x2+y2)dxdy=02π0+er2rdrdθ=02πdθ0+er2rdr=π

  • 由上式可以得到
    1 π ∫ e − x 2 d x = 1 \frac{1}{\sqrt{\pi}} \int e^{-x^2} dx = 1 π 1ex2dx=1

  • 进而得到 p ( x ) = 1 π e − x 2 ; ∫ p ( x ) = 1 p(x) = \frac{1}{\sqrt{\pi}} e^{-x^2} ;\int p(x) = 1 p(x)=π 1ex2;p(x)=1

  • 两点修正:

    • 期望为 μ \mu μ 最高点的位置。
    • 方差为 σ 2 \sigma ^2 σ2 从峰值下落的快慢。

N ( μ , σ ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 N(\mu, \sigma) = \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}} N(μ,σ)=2π σ1e2σ2(xμ)2

5.2 大数定律+中心极限定理

  • 任意的概率分布作独立叠加将还原为正态分布。

5.3 误差函数

  • 定义:
    偏离正态分布的原点会积累多少误差
  • 具体公式:
    e r r o r   f ( x ) = 2 π ∫ 0 x e − t 2 d t = 2 N ( 0 , 1 ) − 1 error \ f(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2}dt = 2N(0,1) - 1 error f(x)=π 20xet2dt=2N(0,1)1
  • 示意图:
    在这里插入图片描述

5.4 二维正态分布

p ( x ) = 1 π e − x 2 p(x) = \frac{1}{\sqrt{\pi}} e^{-x^2} p(x)=π 1ex2

  • p ( x , y ) = p ( x ) p ( y ) 若 x , y 相 会 独 立 = 1 π e − x 2 1 π e − y 2 p(x,y) = p(x) p(y) \quad若x,y 相会独立\\ = \frac{1}{\sqrt{\pi}} e^{-x^2}\frac{1}{\sqrt{\pi}} e^{-y^2} p(x,y)=p(x)p(y)x,y=π 1ex2π 1ey2

  • x , y x,y x,y相关不独立的正态分布

  • p ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e x p ( − 1 2 ( 1 − ρ 2 ) ( ( x − μ x ) 2 σ x 2 − 2 ρ x − μ x σ x y − μ y σ y + ( y − μ y ) 2 σ y 2 ) ) p(x,y) = \frac{1}{2 \pi \sigma_1 \sigma_2 \sqrt{1- \rho^2}} exp(- \frac{1}{2(1-\rho^2)}(\frac{(x - \mu_x)^2}{\sigma_x^2} - 2\rho \frac{x - \mu_x}{\sigma_x} \frac{y - \mu_y}{\sigma_y}+\frac{(y - \mu_y)^2}{\sigma_y^2})) p(x,y)=2πσ1σ21ρ2 1exp(2(1ρ2)1(σx2(xμx)22ρσxxμxσyyμy+σy2(yμy)2))### 5.4.1 方差
    σ 2 = E [ ( x − E ( x ) ) 2 ] \sigma^2 = E[ (x - E(x))^2] σ2=E[(xE(x))2]

5.4.2 协方差

c o v ( x , y ) = E [ ( x − E ( x ) ) ∗ ( y − E ( y ) ) ] cov(x,y) = E[(x - E(x)) * (y - E(y))] cov(x,y)=E[(xE(x))(yE(y))]

  • 为0 ,则 x , y x,y x,y是相互独立的。
  • 不为0,则 x , y x,y x,y具有一定的相关性。

5.4.3 相关系数 ρ \rho ρ

ρ x , y = c o v ( x , y ) σ ( x ) σ ( y ) \rho_{x,y} = \frac{cov(x,y)}{\sigma (x) \sigma (y)} ρx,y=σ(x)σ(y)cov(x,y)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值