机器学习---数学基础(二、概率统计)

1、概率与积分

(1)离散随机变量

在这里插入图片描述

(2)连续随机变量

在这里插入图片描述

(3)如何理解概率

1)事件的概率

  • 整个概率空间是一个事件,这个事件一定发生所以全空间的概率为 1 1 1
  • 事件 是随机变量值域的子集 S S S
  • 事件的概率 表示 S S S 里面概率之和或概率密度之积分。

2)事件的条件概率

  • 条件也是事件,也可以表示为随机变量值域的子集: A A A
  • 条件概率里面的事件,又是这个条件的子集: S ∩ A ⊂ A S \cap A \subset A SAA
  • 事件的条件概率则表示为 S ∩ A S \cap A SA A A A里面所占的比例。 P ( S ∣ A ) = P ( S ∩ A ) P ( A ) P(S|A) = \frac{P(S \cap A)}{P(A)} P(SA)=P(A)P(SA)

2、条件概率与贝叶斯公式

在这里插入图片描述

3、大数定律与中心极限定理

3.1 随机变量的矩

在这里插入图片描述

3.2 大数定律

在这里插入图片描述

3.3 中心极限定理【正态分布】

在这里插入图片描述

4、矩估计与极大似然估计

4.1 参数估计

在这里插入图片描述

4.2 矩估计

在这里插入图片描述
在这里插入图片描述

4.3 极大似然估计

  • 给定随机变量的分布与未知参数,利用观测到的样本计算似然函数
  • 选择最大化似然函数的参数作为参数估计量。【对未知参数的估计】
    在这里插入图片描述
    在这里插入图片描述

应用举例:正态分布的参数估计

X X X 服从参数为 θ = ( μ , σ ) \theta = (\mu, \sigma) θ=(μ,σ)的正态分布,独立重复实验 n n n 次得到样本, X 1 , . . . , X n X_1, ... , X_n X1,...,Xn. 请利用极大似然估计来估计参数 θ \theta θ

L ( μ , σ ) = ∏ i = 1 n 1 2 π σ e x p ( − ( x i − μ ) 2 2 σ 2 ) L(\mu, \sigma) = \prod_{i=1}^n {\frac{1}{\sqrt{2 \pi} \sigma} exp(- \frac{(x_i - \mu)^2}{2 \sigma^2})} L(μ,σ)=i=1n2π σ1exp(2σ2(xiμ)2)

l ( μ , σ ) = l n ( L ( μ , σ ) ) = l n ( ∏ i = 1 n 1 2 π σ e x p ( − ( x i − μ ) 2 2 σ 2 ) ) l(\mu, \sigma) = ln(L(\mu, \sigma)) = ln(\prod_{i=1}^n \frac{1}{\sqrt{2 \pi} \sigma} exp(- \frac{(x_i - \mu)^2}{2 \sigma^2})) l(μ,σ)=ln(L(μ,σ))=ln(i=1n2π σ1exp(2σ2(xiμ)2))

l ( μ , σ ) = ∑ i = 1 n ( l n ( 1 2 π σ ) + l n ( e x p ( − ( x i − μ ) 2 2 σ 2 ) ) ) l(\mu, \sigma) = \sum_{i=1}^n(ln(\frac{1}{\sqrt{2 \pi}\sigma} ) + ln(exp(- \frac{(x_i - \mu)^2}{2 \sigma^2})) ) l(μ,σ)=i=1n(ln(2π σ1)+ln(exp(2σ2(xiμ)2)))

l ( μ , σ ) = ∑ i = 1 n ( 0 − l n ( 2 π ) − l n ( σ ) + ( − ( x i − μ ) 2 2 σ 2 ) ) ) l(\mu, \sigma) = \sum_{i=1}^n(0 - ln(\sqrt{2 \pi}) - ln(\sigma) + (- \frac{(x_i - \mu)^2}{2 \sigma^2})) ) l(μ,σ)=i=1n(0ln(2π )ln(σ)+(2σ2(xiμ)2)))
所以:
l ( μ , σ ) = C − n 2 l n ( σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 l(\mu, \sigma) = C - \frac{n}{2}ln(\sigma^2)- \frac{1}{2 \sigma^2} \sum_{i=1}^n(x_i -\mu)^2 l(μ,σ)=C2nln(σ2)2σ21i=1n(xiμ)2

然后似然方程为 ∂ l ∂ σ = ∂ l ∂ μ = 0 \frac{\partial l}{\partial \sigma} = \frac{\partial l}{\partial \mu} = 0 σl=μl=0,也就是
μ = 1 n ∑ i = 1 n x i \mu = \frac{1}{n} \sum_{i=1}^n x_i μ=n1i=1nxi
σ 2 = 1 n ∑ i = 1 n ( x i − μ ) 2 \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 σ2=n1i=1n(xiμ)2

最后计算得到极大似然估计量:
μ = X ‾ \mu = \overline{X} μ=X
σ ^ 2 = 1 n ∑ i = 1 n ( x i − X ‾ ) 2 \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{X})^2 σ^2=n1i=1n(xiX)2

4.4 点估计的评判标准

  • 相合性:当样本数量趋于无穷时,估计量收敛于参数真实值。
  • 无偏性:对于有限的样本,估计量所符合的分布之期望等于参数真实值。
  • 有效性:估计值所满足的分布方差越小越好。
  • 渐进正态性:当样本趋于无穷时,去中心化去量纲化的估计量符合标准正态分布。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值