人工智能AI
文章平均质量分 83
有关人工智能学习
欧晨eli
达·芬奇说:“理论脱离实践是最大的不幸,实践应以好的理论为基础。”
展开
-
在理解通用逼近定理之前,你都不会理解神经网络
由George Cybenko于1989年制定,仅适用于S型曲线激活,并于1991年由Kurt Hornik证明适用于所有激活函数(神经网络的体系结构而不是功能的选择是性能背后的驱动力),它的发现是一个重要的驱动力 促使神经网络的激动人心的发展成为当今使用它们的众多应用程序。有了足够的恒定区域("步长"),就可以在给定的范围内合理估计函数。通用逼近定理的关键在于,与其在输入和输出之间创建复杂的数学关系,不如使用简单的线性操作将复杂的功能划分为许多小的,较不复杂的部分,每个部分都由一个神经元获取。转载 2023-04-09 18:35:21 · 530 阅读 · 0 评论 -
了解动作电位的传导机制
当中枢神经将要发出神经信号时,相关神经元会首先出现细胞膜通透性的改变(变大),使细胞膜外带有正电的钾离子和纳离子一股脑进入细胞内部,于是产生一个内高外低的、100mV左右的电位差,这个电位差就被称为动作电位。事实上,动作电位的传递过程有点像多米诺骨牌:产生动作电位的细胞将电刺激传给相邻细胞,相邻细胞受到刺激后也迅速通过细胞膜通透性的改变和正电离子的渗透产生电位差和电流,然后再将电刺激传给下一个细胞,如此循环,像多米诺骨牌那样每次传递都是一个新的开始,直到电信号被传至神经末稍的肌肉组织和其他效应器。转载 2022-10-09 17:33:43 · 1529 阅读 · 0 评论 -
开源深度学习框架PlaidML安装及测试
PlaidML 可以使用AMD的显卡在windows平台上进行深度学习转载 2022-06-09 20:50:06 · 814 阅读 · 1 评论 -
卷积运算与互相关运算
卷积运算与互相关运算转载 2022-04-20 15:32:24 · 1743 阅读 · 0 评论 -
决策树——ID3算法
前言我们在使用数据挖掘的时候,完成数据的“清洗”等一系列繁琐的步骤,就可以对数据进一步地进行“挖掘”——对数据进行分类的建立、预测、聚类分析等等的操作。在分类和预测的过程中,有一系列的算法得以脱颖而出——“回归分析”、“决策树”、“人工神经网络”等等那么今天我就来介绍一下”决策树“——ID3算法一、ID3算法ID3作为一种经典的决策树算法,是基于信息熵来选择最佳的测试属性,其选择了当前样本集中具有最大信息增益值的属性作为测试属性。样本集的划分则依据了测试属性的取值进行,测试属性有多少种取值转载 2022-04-13 14:18:29 · 16679 阅读 · 3 评论 -
集成学习(ensemble learning)
集成学习(ensemble learning)在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好)。集成学习就是组合这里的多个弱监督模型以期得到一个更好更全面的强监督模型,集成学习潜在的思想是即便某一个弱分类器得到了错误的预测,其他的弱分类器也可以将错误纠正回来。单个学习器我们称为弱学习器,相对的集成学习则是强学习器。 弱学习器:常指泛化性能略优于随机猜测的学习器:例转载 2022-04-08 14:15:42 · 34891 阅读 · 1 评论 -
Jupyter 魔术命令(magic commands)和常用快捷键
常用命令自动重新加载更改的模块%load_ext autoreload%autoreload 2启动和当前笔记本相同内核的 qtconsole:%qtconsole当前笔记本链接信息:%connect_infoLine magics命令 详情 %alias 定义别名 %alias_magic 为现有的魔术命令创建别名 %autocall %automagic 设置输入魔术命令时是否键入%前缀,on(1)/off(0) %bo转载 2022-03-07 11:02:58 · 1587 阅读 · 0 评论 -
通俗易懂方差(Variance)和偏差(Bias)
看了沐神的讲解,恍然大悟,b站可以不刷,但沐神一定要看。在统计模型中,通过方差和偏差来衡量一个模型。1 方差和偏差的概念偏差(Bias):预测值和真实值之间的误差方差(Variance):预测值之间的离散程度,也就是离其期望值的距离。方差越大,数据的分布越分散。来自:通俗易懂方差(Variance)和偏差(Bias)_weiyaner的博客-CSDN博客_偏差与方差...转载 2022-03-03 10:18:32 · 531 阅读 · 0 评论 -
最值得看的十大机器学习公开课
机器学习热潮,人才匮乏十分显著。截至目前,国内开设人工智能(AI)专业的高校不多,相当多的开发者是跨界入门,需要自学大量知识并摸索。因而优质的学习资源至关重要。因此,雷锋网搜集了全世界范围内最受欢迎的机器学习课程,整理成这份“机器学习十大入门公开课”盘点,集中呈现给各位。这份推荐榜颇费心血,综合考虑了难易、侧重点、时效性等诸多因素,希望能帮助大家找到最适合自己的学习资源。这些课程全部免费开放,但有些需FQ,有的缺少中文字幕。一、吴恩达“机器学习”公开课 课程名称:机器学习 Machine Le.转载 2022-03-02 14:59:17 · 2337 阅读 · 0 评论 -
最值得收藏的 人工智能导论 全部知识点思维导图整理(王万良慕课课程)
本文的思维导图根据慕课上的浙江工业大学的人工智能导论课程整理而来并标记出重点内容,相关PPT课件可在慕课上查看思维导图源文件已经发布在人工智能相关.emmx-深度学习文档类资源-CSDN下载download.csdn.net/download/weixin_43959833/16157686正在上传…重新上传取消当中,有需要的可以去孤柒的博客_孤 柒_CSDN博客-Matplotlib,springMVC,Mybatis领域博主blog.csdn.net/weixin_439598.转载 2022-02-25 10:35:40 · 4186 阅读 · 5 评论 -
贝叶斯分类器
概率和统计学作为数学中重要的一支,同样在机器学习中占据中重要的地位。读者们将在本公众号接下来的文章里陆续接触到贝叶斯分类器、贝叶斯网络(概率图模型)、蒙特卡罗方法、隐马尔可夫链。今天先来捏一个最软(简单)柿子—贝叶斯分类器。贝叶斯分类算法是统计学中的一种分类方法,它是一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯(NaïveBayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据中,而且方法简单、分类准确率高、速度快。本文内容包括贝叶斯定理 朴素贝叶斯分类转载 2022-02-24 15:27:39 · 462 阅读 · 0 评论 -
AI经典书单:入门人工智能该读哪些书?
快问快答:学习人工智能该读哪些书可以快速入门呢?我的答案是多读经典书。方向对了即使慢点,总会走向成功的终点。而该读哪些书,我带来了五份经典书单。人工智能有多火,相信铺天盖地的新闻已经证实了这一点,不可否认,我们已经迎来了人工智能的又一次高潮。与前几次人工智能的飞跃相比,这一次人工智能突破将软件算法、高并发硬件系统以及大数据有机地结合在一起,进而将人工智能推向了最接近人类智能的制高点。我在招聘网站上搜索人工智能相关的岗位,这些岗位的涉及到的技术领域包含:算法、深度学习、机器学习、自然语言处理、数据转载 2022-01-18 17:05:58 · 3453 阅读 · 0 评论 -
tesseract-ocr使用以及训练方法
本人最近在做字符识别,所以自行在网上寻找方法,接触到tesseract,自己按照网上方法做的时候,也遇到一些问题,解决了一些。所以我决定写下我第一个博客,一是方便自己以后查看,更新学习。二是方便和网友交流学习。Tesseract介绍 Tesseract是一个开源的OCR(Optical Character Recognition,光学字符识别)引擎,可以识别多种格式的图像文件并将其转换成文本,目前已支持60多种语言(包括中文)。 Tesseract最初由HP公司开发,后来由G...转载 2021-12-29 17:35:44 · 22432 阅读 · 3 评论 -
gensim中的word2vec的使用
本着尊重原著的想法,我们先把一些引用的文章贴上来,供大家参考word2vec的理论知识,这个真的蛮详细的,我表示没有耐心全部搞透啊!:https://blog.csdn.net/itplus/article/details/37969519苏剑林苏大神的博客,我很喜欢的一位大神:https://kexue.fm/archives/3863刘建平Pinard大神的博客:https://...转载 2020-04-07 22:51:28 · 2585 阅读 · 1 评论 -
Word2Vec报错:KeyError: "word 'XXX' not in vocabulary"
发生在想通过model['XXX']观察一下XXX的词向量的时候 原因一 最简单的原因就是这个词不在你做来做训练的语料库中 原因二 在定义模型时 model = word2vec.Word2Vec(sentences, min_count=5)有一个min_count的属性,它的默认值是5,Word2Vec在训练时会忽略词频小于该属性值的词,可能你进行观察的这个...转载 2020-04-07 17:41:23 · 5490 阅读 · 8 评论 -
【资源搜集】聊天机器人 API 搜集汇总
搜集整理了一些比较好用的 ”聊天机器人“ 的 API 接口。如果后期有机会的话,把它们接入我的程序中,做一个陪聊小助手,也是一个不错的选择。小 i 机器人有网页版和手机版,网页版直接打开就是聊天窗口界面,不需要注册。聊天的风格还是比较活泼的,没有那么死板。没有提供开放的开发者接口 API ,不过如果懂爬虫知识的话,可以抓包来搞定。相关文章可以参考:https://blo...转载 2020-04-02 19:07:59 · 1370 阅读 · 0 评论 -
文本情感分析
基于主题模型的文本情感分析系统主要包括以下部分:评论信息采集与预处理(如网页爬取、中文分词、停用词处理等)、主题抽取、情感词抽取(可能涉及到情感词典构建)、主题的情感分类或评分、主题情感摘要生成(方便用户直接了解主题)、系统评测等。此外,当前的基于主题模型的文本情感分析技术主要侧重于文本评论,而较少关注与客服人员的文本问答或者语音咨询;而后者对于挖掘用户需求也是有意义的。文本情感极性分...转载 2020-02-23 16:23:26 · 2906 阅读 · 0 评论 -
搜集AI开放平台
1、百度AI2、腾讯AI3、阿里云4、华为 开发者中心5、小米AI6、网易AI7、360 AI8、京东AI9、科大讯飞 AI10、旷视Face++ AI11、海康威视 AI12、搜狗 AI13、云知声14、OLAMI 欧拉密 AI15、亚马逊AI16、Inter 英特尔AI...原创 2019-09-22 21:25:24 · 291 阅读 · 0 评论